www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - supremum abschätzen
supremum abschätzen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

supremum abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 06.04.2009
Autor: Rutzel

Hallo,

ich bin gerade am Grübeln:

Seien A und B reelle [mm] n\times [/mm] n Matrizen und v [mm] \in \IR^n [/mm]

darf ich dann wie folgt abschätzen?

[mm] sup(||Av||+||Bv||)\le [/mm] sup(||Av||)+sup(||Bv||)

Gefühlsmäßig würde ich auf jeden Fall ja sagen, da ich die Menge über welcher ich das Supremum nehme ja vergrößere.

Wie kann an das richtig begründen?

Gruß,
Rutzel

        
Bezug
supremum abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Mo 06.04.2009
Autor: Marcel

Hallo Rutzel,

> Hallo,
>  
> ich bin gerade am Grübeln:
>  
> Seien A und B reelle [mm]n\times[/mm] n Matrizen und v [mm]\in \IR^n[/mm]
>  
> darf ich dann wie folgt abschätzen?
>  
> [mm]sup(||Av||+||Bv||)\le[/mm] sup(||Av||)+sup(||Bv||)
>  
> Gefühlsmäßig würde ich auf jeden Fall ja sagen, da ich die
> Menge über welcher ich das Supremum nehme ja vergrößere.

ganz einfach: ist [mm] $s_1:=\sup \|Av\|$ [/mm] und [mm] $s_2:=\sup \|Bw\|$, [/mm] so gilt nach Definition des Supremums:
[mm] $$s_1+s_2 \ge (\|Av\|+\|Bw\|)$$ [/mm]
für alle betrachteten Paare [mm] $(v,w)\,$ [/mm] des [mm] $\IR^n \times \IR^n\,.$ [/mm]

Insbesondere gilt also (setze [mm] $w=v\,$) [/mm]
[mm] $$\|Av\|+\|Bv\| \le s_1+s_2$$ [/mm]
für alle betrachteten Vektoren $v [mm] \in \IR^n$ [/mm] und damit auch
[mm] $$\sup \{\|Av\|+\|Bv\|\} \le \sup \{s_1+s_2\}=s_1+s_2\,.$$ [/mm]

P.S.:
Ich habe für alle betrachteten $v [mm] \in \IR^n$ [/mm] etc. geschrieben, weil ich nicht glaube, dass bei Dir [mm] $\sup \|Av\|=\sup \{\|Av\|:\;v \in \IR^n\}$ [/mm] meint, sondern ich vermute:
[mm] $\sup \|Av\|:=\sup \{\|Av\|:\;v \in \Omega\}$ [/mm] für eine gewisse (beschränkte?) Menge [mm] $\Omega \subset \IR^n\,.$ [/mm]

Wenn das so stimmt, dann solltest Du Aussagen wie "für alle betrachteten Paare $(v,w) [mm] \in \IR^n \times \IR^n$..." [/mm] dann interpretieren als:
"für alle $v,w [mm] \in \Omega$..." [/mm] (oder: "für alle Paare $(v,w) [mm] \in \Omega \times \Omega$") [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]