www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - summierte Trapez-Regel
summierte Trapez-Regel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summierte Trapez-Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Fr 11.12.2009
Autor: az118

Aufgabe
Berechnen Sie mit der summierten Trapezregel zu den Schrittweiten h0 = 1, h1 = 1/2, h2 = 1/4 drei
Näherungen T0, T1, T2 für das Integral I := [mm] \integral_{0}^{1}{sin(\pi*x) dx} [/mm]

Bestimmen Sie dann in der Newtonschen Darstellung (unter Angabe des Steigungsschemas) das Interpolationspolynom
p höchstens zweiten Grades zu den Stützpunkten (hi, Ti), i = 0, 1, 2, und berechnen
Sie p(0) als weitere Näherung für I.

Hallo, ich habe das jetzt mal durch gerechnet mit der summierten Trapez-Regel und wollte nur wissen,ob das richtig so ist?

T = h/2 [mm] *(f(a)+2*\summe_{i=1}^{n-1}f(a+i*h)+f(b)) [/mm]

mit h=(b-a)/n

f(a)=0
f(b)=0

T0=0
T1=1/2
[mm] T2=1/4+\wurzel{2}/4 [/mm]


newtonsche Darstellung: [mm] p(x)=(x-1)-((4*\wurzel{2})/3)*(x-1)*(x-1/2) [/mm]

[mm] p(0)=-1-(2*\wurzel{2})/3 [/mm]

        
Bezug
summierte Trapez-Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Fr 11.12.2009
Autor: MathePower

Hallo az118,


> Berechnen Sie mit der summierten Trapezregel zu den
> Schrittweiten h0 = 1, h1 = 1/2, h2 = 1/4 drei
>  Näherungen T0, T1, T2 für das Integral I :=
> [mm]\integral_{0}^{1}{sin(\pi*x) dx}[/mm]
>  
> Bestimmen Sie dann in der Newtonschen Darstellung (unter
> Angabe des Steigungsschemas) das Interpolationspolynom
>  p höchstens zweiten Grades zu den Stützpunkten (hi, Ti),
> i = 0, 1, 2, und berechnen
>  Sie p(0) als weitere Näherung für I.
>  Hallo, ich habe das jetzt mal durch gerechnet mit der
> summierten Trapez-Regel und wollte nur wissen,ob das
> richtig so ist?
>  
> T = h/2 [mm]*(f(a)+2*\summe_{i=1}^{n-1}f(a+i*h)+f(b))[/mm]
>  
> mit h=(b-a)/n
>  
> f(a)=0
>  f(b)=0
>  
> T0=0
>  T1=1/2
>  [mm]T2=1/4+\wurzel{2}/4[/mm]
>  


Die Werte stimmen. [ok]


>
> newtonsche Darstellung:
> [mm]p(x)=(x-1)-((4*\wurzel{2})/3)*(x-1)*(x-1/2)[/mm]
>  
> [mm]p(0)=-1-(2*\wurzel{2})/3[/mm]  


Die newtonsche Darstellung mußt Du nochmal nachrechnen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]