www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - stückweise stetig
stückweise stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stückweise stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 20.05.2006
Autor: susi2006

Hallo!

Mir ist nicht ganz klar, was eine stückweise stetige Funktion bedeutet. Liege ich richtig in der Annahme, dass eine stückweise stetige Funktion eine Funktion ist, die stetig fortsetzbar ist.

Z.B. [mm] f:\IR\backslash\{0\}\to\IR [/mm] mit [mm] f(x)=\bruch{x}{e^{x}-1} [/mm]

Diese Funktion ist auf [mm] \IR\backslash\{0\} [/mm] stetig. Aber in 0 stetig fortsetzbar mit f(0)=1 und somit stückweise stetig??


Dagegen ist z.B. die Funktion g(x)=(3 für x>5, -2 für -1<x<5, x für x<-1) zwar in den Intervallen stetig, aber in den Punkten 5,-1 nicht stetig fortsetzbar und somit auch nicht stückweise stetig ??

Gilt somit: Funktion heißt stückweise stetig [mm] \gdw [/mm] Funktion stetig fortsetbar??

Danke für die Hilfe!

        
Bezug
stückweise stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Sa 20.05.2006
Autor: felix024

Hallo Susi,

stückweise stetig kannst du eigentlich wörtliche verstehen. Anschaulich bedeutet es, dass du die Funktion so in Stücke zerteilen kannst, dass sie dort stetig ist. Wenn du es exakt formulieren möchtest, heißt es für eine Funktion f,
f:[a,b]->Bildraum ist stückweise stetig, wenn [mm] a_1,...,a_n [/mm] mit [mm] a_1=a [/mm] und [mm] a_n=b [/mm] existieren, so dass für 1 [mm] \le [/mm] j  [mm] \le [/mm] n-1 gilt:
[mm] f|_{[a_j,a_j+1]} [/mm] ist stetig.

Gruß
Felix




Bezug
                
Bezug
stückweise stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Sa 20.05.2006
Autor: susi2006

Hallo!

Also sind beide Funktionen, die ich angegeben habe, stückweise stetig und die Funktion muss NICHT stetig fortsetzbar sein?

Vielen Dank

Bezug
                        
Bezug
stückweise stetig: Richtig!
Status: (Antwort) fertig Status 
Datum: 14:59 Sa 20.05.2006
Autor: Loddar

Hallo Susi!


[daumenhoch] Richtig!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]