www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - strikt konvex L^1
strikt konvex L^1 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

strikt konvex L^1: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:00 Do 11.02.2021
Autor: Noya

Aufgabe
Ist F(u)= [mm] \parallel [/mm] k [mm] \ast [/mm] u -f [mm] \parallel_{L^1(\Omega)} [/mm] strikt konvex für k(x)=1 für alle x [mm] \in \omega [/mm] mit F: [mm] L^1(\Omega) \to \overline{\mathbb{R}} [/mm]

Hallo ihr Lieben,
ich würde gerne zeigen, dass F strikt konvex ist für k =1, d.h zz. ist
[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm] < [mm] \lambda F(u_1) [/mm] + [mm] (1-\lambda)F(u_2) [/mm] für [mm] \lambda \in [/mm] (0,1)
Wir wissen au der Vorleung auch, dass F i.A nicht strikt konvex ist, haben aber den Sonderfall k=1, den ich gerne überprüfen würde.

[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm]  = [mm] \parallel [/mm] k [mm] \ast (\lambda u_1 [/mm] + [mm] (1-\lambda) u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (k [mm] \ast u_1)+ (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} =\parallel \lambda [/mm] (k [mm] \ast u_1)+ (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] )-f [mm] +\lambda [/mm] f - [mm] \lambda [/mm] f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (k [mm] \ast u_1 [/mm] -f )+ [mm] (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)} [/mm]
Jetzt könnte ich [mm] \le [/mm] abschätzen, aber nicht <,also ich komme nur auf Konvexität, d.h.
[mm] \le \lambda \parallel(k \ast u_1 [/mm] -f ) [mm] \parallel_{L^1(\Omega)}+ (1-\lambda)\parallel [/mm] (k [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)} [/mm]

Was ich aber noch nicht benutzt habe ist, dass k=1 ist.

[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm]  = [mm] \parallel [/mm] 1 [mm] \ast (\lambda u_1 [/mm] + [mm] (1-\lambda) u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (1 [mm] \ast u_1 [/mm] -f )+ [mm] (1-\lambda) [/mm] (1 [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)} [/mm]
[mm] \le \lambda \parallel(1 \ast u_1 [/mm] -f ) [mm] \parallel_{L^1(\Omega)}+ (1-\lambda)\parallel [/mm] (1 [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)} [/mm]
Was aber erstmal nichts ändert, oder?
Ist das überhaupt strikt konvex oder verenne ich mich hier?

Hat jemand bitte einen Hinweis für mich?

alles an Vss & Infos aus dem Skript:

[mm] \Omega \subset \mathbb{R}^2 [/mm] offen und beschränkt,
f [mm] \in L^1(\Omega) [/mm]
Faltungsoperator A: [mm] L^1(\Omega) \to L^1(\Omega') [/mm] u [mm] \mapsto [/mm] k [mm] \ast [/mm] u mit Faltungskern k [mm] \in L^1(\omega) [/mm]
für [mm] \omega, \Omega' \subset \mathbb{R}^2 [/mm] geeignet
supp k = [mm] \omega [/mm]
[mm] \Omega' [/mm] - [mm] \omega [/mm] = [mm] \{ x-z \in \mathbb{R}^2 : x \in \Omega', z \in \omega\} \subset \Omega [/mm]
Faltung von u und k :  (k [mm] \ast [/mm] u) (x) =  [mm] \int_{\omega} [/mm] k(y)u(x-y)dy [mm] \forll [/mm] x [mm] \in \Omega' [/mm]
und Au(x) = k [mm] \ast [/mm] u (x) = [mm] \int_{\omega} [/mm] k(y)u(x-y)dy
Wir haben in der VL gezeigt, dass :
-für k [mm] \L^1(\omega) [/mm] und u [mm] \in L^p (\Omega) [/mm] mit 1 [mm] \le [/mm] p [mm] \le \infty [/mm] so ist (k [mm] \ast [/mm] u) [mm] \in L^p(\Omega') [/mm] und [mm] \parallel [/mm] k [mm] \ast [/mm] u [mm] \parallel_{L^p (\Omega')}\le \parallel [/mm] k [mm] \parallel_{L^1 (\omega)} \parallel [/mm] u [mm] \parallel_{L^p (\Omega)} [/mm]
- Faltung ist symmetrisch (k [mm] \ast [/mm] u)(x) = (u [mm] \ast [/mm] k)(x)
-Faltung it linear in u für festes k
- Der Operator A: [mm] L^1(\Omega) \to L^1(\Omega') [/mm] definiert linearen und stetigen Operator mit [mm] \parallel [/mm] A [mm] \parallel_{L(L^p,L^p)} [/mm] = [mm] \parallel [/mm] k [mm] \parallel_{L^1} [/mm]



Vielen Dank und liebe Grüße
Noya

        
Bezug
strikt konvex L^1: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 13.02.2021
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]