www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - stochastische Unabhängigkeit
stochastische Unabhängigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastische Unabhängigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:09 Mi 18.11.2009
Autor: Unk

Aufgabe
Sie betrachten den diskreten Wahrscheinlichkeitsraum [mm] (\Omega,P). X_i:\Omega \rightarrow \chi_i, [/mm] i=1,...,5 seien unabhängige Zufallsvariablen.
Wir definieren bel. Funktionen [mm] f_1 [/mm] und [mm] f_2 [/mm] auf [mm] \chi_1\times \chi_2 [/mm] bzw. [mm] \chi_3\times\chi_4\times\chi_5. [/mm]
Zeigen Sie: Die Zufallsvariablen [mm] Y_1 [/mm] und [mm] Y_2 [/mm] mit [mm] Y_1(\omega):=f_1(X_1(\omega),X_2(\omega)) [/mm] und [mm] Y_2(\omega):=f_2(X_3(\omega),X_4(\omega),X_5(\omega)) [/mm] sind unabhängig.  

Hallo,

zu zeigen ist nun: [mm] P(Y_1=y_1,Y_2=y_2)=P(Y_1=y_1)\cdot P(Y_2=y_2). [/mm]
Ich habe da etwas gemacht, glaube aber dass das katastrophal daneben ist.

Ich weiß bereits, dass gilt: [mm] X_{1},...,X_{5} [/mm] sind unabhängig [mm] \Leftrightarrow [/mm] für bel. [mm] A_{i}\subset\chi_{i} [/mm] gilt: [mm] P\left(\bigcap_{i=1}^{n}\{X_{i}\in A_{i}\}\right)=\prod_{i=1}^{n}P(X_{i}\in A_{i}) [/mm] (*).

Nun mache ich nur: Für [mm] y_{1} [/mm] sei [mm] A_{1}=\{x_{12}\in\chi_{1}\times\chi_{2}:\, f_{1}(x_{12})=y_{1}\} [/mm] und für [mm] y_{2} [/mm] sei [mm] A_{2}=\{x_{345}\in\chi_{3}\times\chi_{4}\times\chi_{5}:\, f_{2}(x_{345})=y_{2}\}. [/mm] Dann ist [mm] \{Y_{1}=y_{1}\}=\{X_{1}\times X_{2}\in A_{1}\} [/mm] und [mm] \{Y_{2}=y_{2}\}=\{X_{3}\times X_{4}\times X_{5}\in A_{2}\}.Nach [/mm] (*) gilt dann: [mm] P(Y_{1}=y_{1},\, Y_{2}=y_{2})=P(Y_{1}=y_{1})\cdot P(Y_{2}=y_{2}). [/mm]

Das erscheint mir aber irgendwie nicht kompatibel, von wegen kartesisches Produkt und so. Ich glaube, dass das wesentlich komplizierter ist. Wie muss man richtig vorgehen?

        
Bezug
stochastische Unabhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Fr 20.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]