www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - stochastisch konvergent
stochastisch konvergent < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastisch konvergent: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 19.05.2009
Autor: elvis-13.09

Aufgabe
[mm] (\Omega, \mathcal{A},P) [/mm] sei ein Wahrscheinlichkeitsraum und [mm] \mathcal{M}=\{X:\Omega \to\IR\ messbar\}. [/mm]
Man definiert für [mm] X,Y\in\mathcal{M} [/mm]
[mm] d(X,Y)=inf\{\delta>0; P(|X-Y|\ge\delta)\le\delta\} [/mm]
Zu zeigen ist: [mm] d(X,Y)=0\gdw [/mm] X=Y P-fast sicher.

Hallo!

obige Äquvialenz erscheint trivial allerdings tu ich mir schwer es exakt und sauber hinzuschreiben, ein Versuch:
Sei also d(X,Y)=0 => [mm] inf\{\delta>0; P(|X-Y|\ge\delta)\le\delta\}=0 [/mm]

ich bin mir hier ehrlich gesagt nicht sicher, ich glaube nämlich dass [mm] \delta=0 [/mm] zugelassen werden muss.
Wie seht ihr das?

Ich komme hier einfach nicht weiter dabei kann es ja nicht so schwer sien.

Grüße Elvis

        
Bezug
stochastisch konvergent: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mi 20.05.2009
Autor: vivo

Hallo,

> [mm](\Omega, \mathcal{A},P)[/mm] sei ein Wahrscheinlichkeitsraum und
> [mm]\mathcal{M}=\{X:\Omega \to\IR\ messbar\}.[/mm]
>  Man definiert
> für [mm]X,Y\in\mathcal{M}[/mm]
>  [mm]d(X,Y)=inf\{\delta>0; P(|X-Y|\ge\delta)\le\delta\}[/mm]
>  Zu
> zeigen ist: [mm]d(X,Y)=0\gdw[/mm] X=Y P-fast sicher.
>  Hallo!
>  
> obige Äquvialenz erscheint trivial allerdings tu ich mir
> schwer es exakt und sauber hinzuschreiben, ein Versuch:
>  Sei also d(X,Y)=0 => [mm]inf\{\delta>0; P(|X-Y|\ge\delta)\le\delta\}=0[/mm]

>  
> ich bin mir hier ehrlich gesagt nicht sicher, ich glaube
> nämlich dass [mm]\delta=0[/mm] zugelassen werden muss.
>  Wie seht ihr das?

>

es geht hier um inf einer Menge, dass ist die gößte untere Schranke einer Menge, diese muss nicht in der Menge enthalten sein.

[mm]d(X,Y)=inf\{\delta>0; P(|X-Y|\ge\delta)\le\delta\}=0[/mm] heißt ja dann, dass das [mm] \delta [/mm] beliebig nahe an die 0 herankommt.

  

> Ich komme hier einfach nicht weiter dabei kann es ja nicht
> so schwer sien.
>  
> Grüße Elvis


Bezug
        
Bezug
stochastisch konvergent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:37 Mi 20.05.2009
Autor: vivo

übrigens gehts hier um keine Konvergenz und schon gar nicht um eine stochastische Konvergenz, sondern darum dass die ZV's Y und X außer auf einer Menge mit Eintrittswahrscheinlichkeit 0, gleich sind.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]