www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - stochast. Konvergenzordnung
stochast. Konvergenzordnung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochast. Konvergenzordnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:26 Fr 09.09.2011
Autor: n-Eck

Hallo,
ich habe folgendes Problem, für das mir leider jeglicher Ansatz fehlt, und wäre sehr froh, wenn mir jemand helfen könnte.

Das habe ich gegeben:
[mm] [/mm]
[mm] f(x)=x^a [/mm] *(1 − [mm] x)^b [/mm]  wobei a,b [mm] \in [/mm] (-0,5; 0,5)
g(x)=f(x)* Indikatorfunktion(0,1)(x)
A= [mm] \int_{t}^{t+D} [/mm] g(t+D−s)* [mm] \sigma_s\, [/mm] ds
wobei σ ein adaptierter càdlàg-Prozess ist (also rechtsseitig stetig mit linksseitig existierenden Limiten) und W eine Brownsche Bewegung.

Und ich soll jetzt zeigen, dass A die stochastische Ordnung (also [mm] O_p) [/mm]   D^(a+0,5) hat.
Also das bedeutet folgendes:
∃k>0:∀ε>0:lim(D→0) sup [mm] P(\left|A/(D^(a+0,5))\right| [/mm] >k)<ε
(Also  a+0,5 ist die Hochzahl, irgendwie bekomme ich das nicht hin.)

Und genau hier fehlt mir jeglicher Ansatz, wie ich das rausfinden oder nachprüfen soll.

Angeblich soll die Varianz etwas damit zu tun haben, also dass man das rausbekommt indem man die Varianz berechnet und diese halbiert (warum??) und die Varianz hat wohl die Ordnung 2a+1 (warum??).

Ich bin für jeden Hinweis dankbar!!!


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/stochastische-Konvergenzordnung

        
Bezug
stochast. Konvergenzordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 17.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]