www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - stetigkeit
stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: "aufgabe"
Status: (Frage) beantwortet Status 
Datum: 12:08 Di 15.03.2005
Autor: woody

"ich habe diese frage in keinem forum auf anderen internetseiten gestellt."

hallo erstmal.ich habe hier eine komplexe aufgabe bei der ich nicht weiterkomme, geschweige einen ansatz finde.here we go.

> Zeigen sie , dass es möglich ist [mm] a,b\in [/mm] R so zu wählen,dass f(x) eine stetige funktion ist.

Sei $f: [mm] \mathbb{R} \to \mathbb{R}$ [/mm] mit
$f(x)= [mm] \begin{cases} x^{3}-5x^{2}-4x+20, mit \, x\in (-\infty,2)\cup(2,6] \\ a, mit \, x=2\\b, mit \, x\in(6, \infty]\end{cases}$ [/mm]

>bye


        
Bezug
stetigkeit: Rückfrage + Hinweis
Status: (Antwort) fertig Status 
Datum: 13:44 Di 15.03.2005
Autor: Loddar

Hallo Woody!

[willkommenmr]


> Sei [mm]f: \mathbb{R} \to \mathbb{R}[/mm] mit
> [mm]f(x)= \begin{cases} x^{3}-5x^{2}-4x+20, mit \, x\in (-\infty,2)\cup(2,6] \\ a, mit \, x=2\\ b,x\in(6, \infty]\end{cases}[/mm]

Ist das Deine Funktion? Das ist leider nicht eindeutig zu erkennen.


Bleiben wir aber mal bei dieser Funktion.

Wenn Du die Stetigkeit zeigen sollst, mußt Du zeigen:

[mm] $\limes_{x\rightarrow x_0\red{-}}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow x_0\red{+}}f(x) [/mm] \ = \ [mm] f(x_0)$ [/mm]


Für die Bestimmung von $a$ heißt das:
[mm] $\limes_{x\rightarrow 2\red{-}}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 2\red{-}} \left(x^3 - 5x^2 - 4x + 20\right) [/mm] \ = \ [mm] 2^3 [/mm] - [mm] 5*2^2 [/mm] - 4*2 + 20 \ = \ 0 \ = \ f(2) \ = \ a$


Hilft Dir das etwas weiter?
Für $b$ geht das analog an der Stelle [mm] $x_0 [/mm] \ = \ 6$ ...

Gruß
Loddar


Bezug
        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Di 15.03.2005
Autor: Zwerglein

Hi, woody,

>>  > Zeigen sie , dass es möglich ist a,b [mm] \in [/mm] R so zu

> wählen,dass f(x) eine stetige funktion ist.
> Sei f:R [mm] \to [/mm] R mit
>   f(x)= [mm] \begin{cases} x^{3}-5x^{2}-4x+20, & \mbox{mit} x \in (-\infty ,2) \cup (2,6] \\ 1, a, \mbox{mit} x=2 \\ 2,b, x \in (6, \infty) \end{cases} [/mm]
>  

Wie Du siehst, habe ich erst mal versucht, etwas Ordnung in Deine Aufgabe zu bringen! So ganz ist mir das jedoch nicht gelungen: Ich zweifle noch, was Du mit "1,a" bzw. "2,b" meinst.

Wenn es lediglich "1*a" bzw. "2*b" bedeutet, dann ist: a=0, b= 16.
Wenn nicht, versuch anhand meiner Angabe die Terme auszubessern!

Tut mir leid! Die Antwort gehört zu einer anderen Frage!


Bezug
                
Bezug
stetigkeit: aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:15 Di 15.03.2005
Autor: woody

hallo ich habe etwas in der letzten aufgabe vergessen, was die ganze aufgabe schwieriger gestaltet. sorry. aber schonmal danke, dass ihr euch um die erste variante gekümmert habt! jetzt zum zweiten versuch! =)
>  
> >>  > Zeigen sie , dass es möglich ist a,b [mm]\in[/mm] R so zu

> > wählen,dass f(x) eine stetige funktion ist.
> > Sei f:R [mm]\to[/mm] R mit
>  >   f(x)= [mm]\begin{cases}( x^{3}-5x^{2}-4x+20)/(x-2), & \mbox{mit} x \in (-\infty ,2) \cup (2,6] \\ , a, \mbox{mit} x=2 \\ ,b, x \in (6, \infty) \end{cases} [/mm]
>  

>

Bezug
                        
Bezug
stetigkeit: Geht (fast) genauso ...
Status: (Antwort) fertig Status 
Datum: 20:55 Di 15.03.2005
Autor: Loddar

Hallo Woody!

[mm] $(x^{3}-5x^{2}-4x+20)/(x-2)$ [/mm]


Das soll uns hier nicht weiter erschrecken.

Durch meine Rechnung oben haben wir ja festgestellt, daß der Zähler für $x \ = \ 2$ gleich Null wird.

Also führen wir einfach eine MBPolynomdivision durch $(x-2)$ durch und erhalten:

[mm] $\bruch{x^{3}-5x^{2}-4x+20}{x-2} [/mm] \ = \ [mm] x^2 [/mm] - 3x - 10$

Nun können wir unsere Grenzwertbetrachtung für $x \ [mm] \to [/mm] \ 2-$ machen:

[mm] $\limes_{x\rightarrow 2-} (x^2 [/mm] - 3x - 10) \ = \ [mm] 2^2 [/mm] - 3*2 - 10 \ = \ -12 \ = \ f(2) \ = \ a$


Gruß
Loddar


Bezug
                                
Bezug
stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Di 15.03.2005
Autor: woody

thank uuu...ihr habt mir echt weitergeholfen-woody

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]