www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - stetigkeit
stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 17.05.2006
Autor: Phys

in unserem Aufgabenblatt ist folgende (meiner meinung nach:unlösbare Aufgabe;-) für die ich nichtmal nen Lösungsansatz habe:
Sei I=[0,1] und V= [mm] C^{1}(I) [/mm] versehen mit der Norm:
[mm] \parallel [/mm] f [mm] \parallel [/mm] = [mm] \max_{x\in I}\wurzel{ |f(x) |^2+|f'(x)|^2} [/mm]
und [mm] V_{0} [/mm] der Raum [mm] C^1(I) [/mm] versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)|.Sei [/mm] W=C(I) mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)| [/mm] überprüfen sie die Stetigkeit von [mm] D_{1}:V \to [/mm] W,f [mm] \to [/mm] f'und [mm] D_{2}:V_{0} \to [/mm] W,f [mm] \to [/mm] f' und dann soll noch gegebenenfalls  [mm] \parallel D_{1} \parallel [/mm] bestimmt werden. Ich wäre für jede Hilfe sehr dankbar, da ich momentan zeimlich auf dem schlauch steh(also keinen Ansatz habe)

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 18.05.2006
Autor: MatthiasKr

Hallo phys,

erstmal: ruhig blut! denn von unlösbarkeit ist diese aufgabe meilenweit entfernt.... ;-)

also, du hast hier verschiedene funktionenräume mit verschiedenen normen gegeben und sollst prüfen, ob der ableitungsoperator jeweils stetig ist.

Zunächst mal ist der Abl.operator ja linear. Wie kann man also die stetigkeit charakterisieren? hat man einen linearen Op. [mm] $D:X\to [/mm] Y$ dann ist dieser gd. stetig, wenn es eine konstante $C$ gibt mit [mm] $\|Dx\|_Y\le C\cdot \|x\|_X,\forall x\in [/mm] X$. Die kleinste solche Konstante $C$ nennt man dann die Operatornorm [mm] $\|D\|$ [/mm] des Operators.

Nehmen wir also mal [mm] $D_1:V\to [/mm] W, [mm] f\mapsto [/mm] f'$. Du musst prüfen, ob du die  [mm] $C^0$-Norm, [/mm] also die maximum-norm, der ableitung durch die [mm] $C^1$-Norm [/mm] der funktion abschätzen kannst. es gilt doch aber

[mm] $\|f'\|_\infty=\max_{x \in I}|f'(x)|\le \max_{x \in I}\wurzel{ |f(x) |^2+|f'(x)|^2}=\|f\|_V$ [/mm]

[mm] $D_1$ [/mm] ist also stetig! Und [mm] $\|D_1\|$ [/mm] haben wir nebenbei auch schon bestimmt, siehst du das? [mm] $D_2$ [/mm] kannst du ja jetzt selbst mal untersuchen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]