www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - stetige Zufallsgrößen
stetige Zufallsgrößen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Zufallsgrößen: Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 16:04 So 21.05.2006
Autor: Karl_Pech

Hallo Zusammen!


Ich habe Schwierigkeiten bei folgender Aufgabe


Aufgabe
Eine stetige Zufallsgröße [mm]X[/mm] besitze folgende Verteilungsfunktion:


[mm]F(x) := \begin{cases} 0,&x\le 0\\ \frac{x^2}{2},&0 < x \le \sqrt{2}\\ 1,& x > \sqrt{2} \end{cases}[/mm]


Bestimmen Sie die zugehörige Dichtefunktion [mm]f(x)[/mm], Erwartungswert und Varianz von [mm]X[/mm].


Zunächst einmal ist klar, daß auch die Dichtefunktion sich aus mehreren Funktionen zusammensetzen muß. Die ersten Beiden habe ich bereits bestimmt, doch mit der Dritten habe ich Probleme. Es gilt also:


[mm]\int_{\sqrt{2}}^x{f(x)\,\mathrm{d}x} = 1[/mm]


und hier weiß ich einfach nicht, wie ich auf [mm]f(x)[/mm] komme? Denn es gilt ja dann:


[mm]F(x) - F\left(\sqrt{2}\right) = 1[/mm]


Aber wie kann das sein, wo doch die obere Integrationsgrenze hier nicht konstant ist?


Danke für die Hilfe!



Grüße
Karl





        
Bezug
stetige Zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 So 21.05.2006
Autor: felixf

Hallo Karl!

> Ich habe Schwierigkeiten bei folgender Aufgabe
>  
>
> Eine stetige Zufallsgröße [mm]X[/mm] besitze folgende
> Verteilungsfunktion:
>  
>
> [mm]F(x) := \begin{cases} 0,&x\le 0\\ \frac{x^2}{2},&0 < x \le \sqrt{2}\\ 1,& x > \sqrt{2} \end{cases}[/mm]
>  
>
> Bestimmen Sie die zugehörige Dichtefunktion [mm]f(x)[/mm],
> Erwartungswert und Varianz von [mm]X[/mm].
>  
> Zunächst einmal ist klar, daß auch die Dichtefunktion sich
> aus mehreren Funktionen zusammensetzen muß.

Genau. Und zwar gilt $f(x) = F'(x)$ fuer fast alle $x$ (an den Stellen wo die Ableitung existiert ists egal was du als $f(x)$ nimmst, da diese $x$ eine Nullmenge bilden).

> Die ersten
> Beiden habe ich bereits bestimmt, doch mit der Dritten habe
> ich Probleme. Es gilt also:
>  
>
> [mm]\int_{\sqrt{2}}^x{f(x)\,\mathrm{d}x} = 1[/mm]

Erstmal Vorsicht, du benutzt $x$ hier auf zwei verschiedene Arten! Und warum sollte diese Gleichung gelten?

Bei Dichten weiss man i.A. nur, dass [mm] $\int_{-\infty}^\infty [/mm] f(x) [mm] \; [/mm] dx = 1$ ist und dass [mm] $\int_{-\infty}^x [/mm] f(t) [mm] \; [/mm] dt = F(x)$ ist. (Aus der zweiten Gleichung folgt mit dem Hauptsatz der Integral- und Differenzialrechnung auch die obige Aussage $F' = f$.)

> [mm]F(x) - F\left(\sqrt{2}\right) = 1[/mm]

Sicher nicht... [mm] $F(\sqrt{2}) [/mm] = 1$ und $0 [mm] \le [/mm] F(x) [mm] \le [/mm] 1$, womit $F(x) - [mm] F(\sqrt{2})$ [/mm] sicher niemals 1 wird...

LG Felix


Bezug
                
Bezug
stetige Zufallsgrößen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:13 So 21.05.2006
Autor: Karl_Pech

Hallo Felix!


> > [mm]F(x) := \begin{cases} 0,&x\le 0\\ \frac{x^2}{2},&0 < x \le \sqrt{2}\\ 1,& x > \sqrt{2} \end{cases}[/mm]
>
> Genau. Und zwar gilt [mm]f(x) = F'(x)[/mm] fuer fast alle [mm]x[/mm] (an den
> Stellen wo die Ableitung existiert ists egal was du als
> [mm]f(x)[/mm] nimmst, da diese [mm]x[/mm] eine Nullmenge bilden).


Also ich bin jetzt folgendermaßen vorgegangen. Und zwar betrachte ich doch 3 verschiedene Intervalle:


[mm]A := (-\infty,0], B:=\left(0,\sqrt{2}\right][/mm] und [mm]C:=\left(\sqrt{2},\infty\right)[/mm].


Da [mm]F(x)[/mm] in [mm]A[/mm] Null ist, muß dort auch [mm]f(x)[/mm] Null sein. Für [mm]B[/mm] rechne ich:


[mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \underbrace{\int_{-\infty}^0{f(t)\,\mathrm{d}t}}_{=0}+\int_0^x{f(t)\,\mathrm{d}t} = \int_0^x{t\,\mathrm{d}t}=\frac{x^2}{2}[/mm], wobei [mm]x \le \sqrt{2}[/mm] ist.


Und bei [mm]C[/mm] rechne ich jetzt:


[mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \int_{-\infty}^0{f(t)\,\mathrm{d}t} + \int_0^b{f(t)\,\mathrm{d}t} + \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = \frac{b^2}{2} + \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = 1 \gdw \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = 1-\frac{b^2}{2}[/mm] mit [mm]b \in B[/mm] und [mm]c \in C[/mm]? [verwirrt]


Also das scheint so nicht zu funktionieren. Irgendwas verstehe ich an dieser Aufgabe nicht...


Bisher habe ich also:


[mm]f(x) = \begin{cases}0,&x \le 0\\ x,& 0 < x \le \sqrt{2}\\ ?, & x > \sqrt{2} \end{cases}[/mm]


Danke für die Hilfe!



Liebe Grüße
Karl





Bezug
                        
Bezug
stetige Zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Di 23.05.2006
Autor: felixf

Hallo Karl!

> > > [mm]F(x) := \begin{cases} 0,&x\le 0\\ \frac{x^2}{2},&0 < x \le \sqrt{2}\\ 1,& x > \sqrt{2} \end{cases}[/mm]
>  
> >
> > Genau. Und zwar gilt [mm]f(x) = F'(x)[/mm] fuer fast alle [mm]x[/mm] (an den
> > Stellen wo die Ableitung existiert ists egal was du als
> > [mm]f(x)[/mm] nimmst, da diese [mm]x[/mm] eine Nullmenge bilden).
>  
>
> Also ich bin jetzt folgendermaßen vorgegangen. Und zwar
> betrachte ich doch 3 verschiedene Intervalle:
>  
>
> [mm]A := (-\infty,0], B:=\left(0,\sqrt{2}\right][/mm] und
> [mm]C:=\left(\sqrt{2},\infty\right)[/mm].
>  
>
> Da [mm]F(x)[/mm] in [mm]A[/mm] Null ist, muß dort auch [mm]f(x)[/mm] Null sein.

Genau.

> Für [mm]B[/mm] rechne ich:
>  
>
> [mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \underbrace{\int_{-\infty}^0{f(t)\,\mathrm{d}t}}_{=0}+\int_0^x{f(t)\,\mathrm{d}t} = \int_0^x{t\,\mathrm{d}t}=\frac{x^2}{2}[/mm],
> wobei [mm]x \le \sqrt{2}[/mm] ist.

...und $x [mm] \ge [/mm] 0$.

> Und bei [mm]C[/mm] rechne ich jetzt:
>  
>
> [mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \int_{-\infty}^0{f(t)\,\mathrm{d}t} + \int_0^b{f(t)\,\mathrm{d}t} + \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = \frac{b^2}{2} + \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = 1 \gdw \int_{\sqrt{2}}^c{f(t)\,\mathrm{d}t} = 1-\frac{b^2}{2}[/mm]
> mit [mm]b \in B[/mm] und [mm]c \in C[/mm]? [verwirrt]

Was genau machst du da?! Du musst $b = [mm] \sqrt{2}$ [/mm] waehlen, ansonsten stimmt schon das erste Gleichheitszeichen nicht mehr...

Wenn du das beruecksichtigst kommst du schnell auf das richtige Ergebnis :-)

LG Felix


Bezug
                                
Bezug
stetige Zufallsgrößen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 23.05.2006
Autor: Karl_Pech

Hallo Felix!


> Was genau machst du da?! Du musst [mm]b = \sqrt{2}[/mm] waehlen,
> ansonsten stimmt schon das erste Gleichheitszeichen nicht
> mehr...
>  
> Wenn du das beruecksichtigst kommst du schnell auf das
> richtige Ergebnis :-)


Ich hab' das jetzt mal gemacht:


[mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \underbrace{\int_{-\infty}^0{f(t)\,\mathrm{d}t}}_{=0}+\int_0^{\sqrt{2}}{t\,\mathrm{d}t}+\int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 1 + \int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 1 \Leftrightarrow \int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 0[/mm]


Und das hieße [mm]f(x) = 0[/mm] für alle [mm]x \ge 2[/mm], was mir wieder etwas seltsam vorkommt. Andererseits kann ich nun keinen Fehler mehr in der Rechnung erkennen, und eine plausible Erklärung für


[mm]F(x) = 1\,\forall x \ge 2[/mm]


habe ich auch. Wenn [mm]f[/mm] Null ist, kann ich mir ja trotzdem eine beliebige Integrationskonstante nehmen, die dann beim Differenzieren verschwindet, also [mm]\frac{\partial}{\partial x}(0\cdot{x}+1) = 0[/mm]. Wäre das plausibel?



Grüße
Karl





Bezug
                                        
Bezug
stetige Zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 23.05.2006
Autor: felixf

Sali Karl!

> > Was genau machst du da?! Du musst [mm]b = \sqrt{2}[/mm] waehlen,
> > ansonsten stimmt schon das erste Gleichheitszeichen nicht
> > mehr...
>  >  
> > Wenn du das beruecksichtigst kommst du schnell auf das
> > richtige Ergebnis :-)
>  
>
> Ich hab' das jetzt mal gemacht:
>  
>
> [mm]\int_{-\infty}^x{f(t)\,\mathrm{d}t} = \underbrace{\int_{-\infty}^0{f(t)\,\mathrm{d}t}}_{=0}+\int_0^{\sqrt{2}}{t\,\mathrm{d}t}+\int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 1 + \int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 1 \Leftrightarrow \int_{\sqrt{2}}^x{f(t)\,\mathrm{d}t} = 0[/mm]

Genau.

> Und das hieße [mm]f(x) = 0[/mm] für alle [mm]x \ge 2[/mm],

Exakt.

> was mir wieder
> etwas seltsam vorkommt.

Warum? Die Dichte gibt ja an, in welcher Gegend Ereignisse liegen, die wahrscheinlich sind (da wo die Dichte in der Naehe $> 0$ ist). Und nun ist fuer alle $x > [mm] \sqrt{2}$ [/mm] die Verteilungsfunktion konstant 1, es gilt also $P(X [mm] \le [/mm] x) = 1$. Und zwar auch schon fuer $x = [mm] \sqrt{2}$, [/mm] also $P(X [mm] \le \sqrt{2}) [/mm] = 1$. Sprich: Die ganze Wahrscheinlichkeitsmasse liegt irgendwo vor [mm] $\sqrt{2}$. [/mm] Und danach kommt nix mehr.

> Andererseits kann ich nun keinen
> Fehler mehr in der Rechnung erkennen, und eine plausible
> Erklärung für
>  
>
> [mm]F(x) = 1\,\forall x \ge 2[/mm]
>  
>
> habe ich auch. Wenn [mm]f[/mm] Null ist, kann ich mir ja trotzdem
> eine beliebige Integrationskonstante nehmen, die dann beim
> Differenzieren verschwindet, also [mm]\frac{\partial}{\partial x}(0\cdot{x}+1) = 0[/mm].
> Wäre das plausibel?

Ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]