www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - stetige Funktion
stetige Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Funktion: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:27 Di 07.12.2004
Autor: Gero

Hi @ all,

ich bräuchte mal wieder eure Hilfe. Die Aufgabe lautet:
"Es sei [mm] f:\IQ \to \IR [/mm] definiert durch f(q):= [mm] e^{q} [/mm] für q [mm] \in \IQ. [/mm] Zeigen Sie, dass der Grenzwert
g(x):=  [mm] \limes_{q\rightarrow\x, q \in \IQ} [/mm] f(q)

für alle x [mm] \in \IR [/mm] existieren und dass damit eine stetige Funktion g: [mm] \IR \to \IR [/mm] definiert wird, die f forstetzt. Zeigen Sie wieter, dass g die einzige stetige Forsetzung von f auf [mm] \IR [/mm] ist."

Hab Ahnung, wie ich das machen soll! Kann mir vielleicht jemand helfen???

Danke schonmal im voraus!

Liebe Grüße              Gero

        
Bezug
stetige Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 11.12.2004
Autor: Stefan

Hallo Gero!

Du könntest zeigen, dass für eine Folge [mm] $(q_n)_{n \in \IN}$ [/mm] aus [mm] $\IQ$ [/mm] mit [mm] $\lim\limits_{n \to \infty} q_n=x$ [/mm] die Folge

[mm] $(f(q_n))_{n \in \IN}$ [/mm]

eine Cauchy-Folge in [mm] $\IR$ [/mm] ist. Dazu müsste ich aber wissen, wie ihr die Exponentialfunktion auf [mm] $\IQ$ [/mm] genau definiert habt.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]