stetige Abb auf komp metr R'n < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $X$ und $K$ kompakte metrische Räume, $f: X [mm] \times [/mm] K [mm] \to \mathbb{R}$ [/mm] eine stetige Abbildung. Zeige, dass die Abbildung: $g: X [mm] \to \mathbb{R}, [/mm] x [mm] \mapsto \sup\{f(x,y)|y\in K\}$ [/mm] stetig ist. |
Hallo!
Bei dieser Aufgabe würde ich mich über einen Tipp freuen.
Meine Ideen bisher: Da wir in metrischen Räumen unterwegs sind, können wir alle möglichen Kriterien für Stetigkeit benutzen, aber ich stoße bei allen auf dasselbe Problem.
Das sind meine Schritte (Beispiel: Folgenkrit/Grenzwert) bisher:
sei [mm] $\tilde [/mm] x [mm] \in [/mm] X$.
Aus Satz von Tychonow folgt: $X [mm] \times [/mm] K$ kompakt, also nimmt $f$ auf $X [mm] \times [/mm] K$ sein Maximum an. Da [mm] $\{ x \} \subseteq [/mm] X$ kompakt (klar), gilt das gleiche für die Einschränkung $f [mm] \mid_{\{ x \} \times K}$. [/mm] Dann:
[mm] $\lim_{x \to \tilde x} [/mm] g(x) = [mm] \lim_{x \to \tilde x} \sup\{f(x,y)|y\in K\} [/mm] = [mm] \lim_{x \to \tilde x} \max\{f(x,y)|y\in K\}$
[/mm]
Was ich machen möchte, ist den Limes in das Supremum reinzuziehen. Danach kann ich sofort die Stetigkeit von $f$ benutzen und bin direkt fertig. Aber alles was mir einfällt ist, es durch ein Maximum zu ersetzen und mir fällt kein Satz ein, warum das besser sein sollte (ich bin mir nicht mal sicher, ob meine Argumentation mit der Einschränkung hieb- und stichfest ist). Ich muss ja wohl irgendwie die Kompaktheit von $X$ und $K$ einfließen lassen...
Hat jemand einen Tipp für mich? Bin ich auf dem richtigen Dampfer oder sollte ich einen Satz anwenden, den ich gerade übersehe?
Vielen Dank!!
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo SEcki.
Danke für den Hinweis, ich habe jetzt ein ganz gutes Verständnis darüber worum es bei der Aufgabe geht (ich war wohl immerhin auf dem richtigen Dampfer mit dem Maximum).
Habe jetzt aber trotz sehr ausführlichen Rumprobierens den eigentlichen Widerspruch nicht herstellen können. Du beschreibst das in https://matheraum.de/read?i=886387 so:
> Allerdings nehme man obiges [mm]y_0[/mm] mit [mm]F(x)=f(x,y_0)[/mm]
> und betrachte die Folge [mm]f(x_n,y_0)[/mm] für [mm](x_n,y_0)\to (x,y_0)[/mm]
> und hat den Widerspruch beisammen.
Ich sehe nicht, wie ich damit die Stetigkeit von $f$ verletzt kriege. Dazu müsste ich ja wirklich einen Fall konstruieren, wo ich eine Folge in $I [mm] \times [/mm] J$ habe (Ich benutze jetzt mal die Namen aus dem anderen Thread), die gegen [mm] $(x,y_0)$ [/mm] konvergiert, aber wo der Grenzwert des Bildes ungleich der Bildes des Grenzwerts ist ... und das ist hier doch nicht der Fall. Meine Widerspruchsannahme sagt mir nur etwas über die Tupel [mm] $(x_n,y_n)$, [/mm] aber wir können ja nicht davon ausgehen, dass [mm] $y_n$ [/mm] gegen [mm] $y_0$ [/mm] konvergiert.
Was übersehe ich noch?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:20 Do 24.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|