www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - stetig und nullstellenfrei
stetig und nullstellenfrei < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig und nullstellenfrei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Sa 31.01.2009
Autor: MissPocahontas

Aufgabe
Sei f: R--> R eine stetige und nullstellenfreie Funktion. Zeigen Sie: Gilt [mm] \limes_{x\rightarrow\infty} [/mm] > 0, so ist f(x) > 0 für alle x [mm] \in [/mm] R.

Hey,

diese Aufgabe ist eine alte Klausuraufgabe unseres Matheprofs. Ich hab halt so angefangen, dass wenn f stetig ist, ist ja der grenzwert für x gegen x0 an jeder stelle gleich dem funktionswert an der stelle x0. Aber wie ich das ganze auf unendlich zurückführen soll... naja ;-) wahrscheinlich bin ich eindeutig schon zu mathegeschädigt... dass mir der Weg, der nahe liegt, schon gar nicht mehr einfallen will. Vielleicht hat ja jemand von euch eine Idee. Danke schonmal,

Melanie

        
Bezug
stetig und nullstellenfrei: Tipps
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 31.01.2009
Autor: Loddar

Hallo MissPocahontas!


Führe einen Widerspruchsbeweis. Nimm an, dass es ein [mm] $x_0$ [/mm] mit [mm] $f(x_0) [/mm] \ [mm] \le [/mm] \ 0$ gibt.

Was weißt Du dann über die Existenz von Nullstelle(n) (Tipp: Zwischenwertsatz)?


Gruß
Loddar


Bezug
                
Bezug
stetig und nullstellenfrei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Sa 31.01.2009
Autor: MissPocahontas

Okay, das heißt, wenn ich annehme dass es ein x0 gibt mit f(x) kleiner/gleich 0, dass es dann laut zws ein x1 geben muss mit f(x) = 0... Das führt aber zu einem wiederspruch zur voraussetzung, da es ja laut voraussetzung eine nullstellenfreie funktion ist. richtig? Und mehr ist es nicht?^^

Bezug
                        
Bezug
stetig und nullstellenfrei: richtig erkannt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Sa 31.01.2009
Autor: Loddar

Hallo MissPocahontas!



> richtig?

Yep!


> Und mehr ist es nicht?

Nö!


Gruß
Loddar


Bezug
                                
Bezug
stetig und nullstellenfrei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Sa 31.01.2009
Autor: MissPocahontas

na dann lieben dank ^^ ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]