stetig differenzierbar ?!? < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist die durch
[mm]f(x)=2x^2-x [/mm] für [mm] x\le1 [/mm] und [mm] f(x)=(2x-1)^{3/2} [/mm] für [mm] x>1[/mm]
definierte Funktion [mm]f:\IR\rightarrow\IR[/mm] differenzierbar oder gar stetig differenzierbar an der Stelle Eins?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. |
Ich konnte nicht raus finden was mit stetig differenzierbar gemeint ist. In allen Büchern steht nur stetig oder differenzierbar. Dass eine Funktion beides sein kann ist mir klar, aber ist das hier gemeint?
Gerechnet habe ich folgendes:
[mm]2x^2|_{x=1}=1[/mm]
[mm](2x-1)^{3/2}|_{x\rightarrow1} =1 \ \ \ \Rightarrow f(x) \mbox{ ist stetig}[/mm]
[mm]2x^2-x dx = 4x-1[/mm]
[mm]4x-1|_{x=1}=3[/mm]
[mm](2x-1)^{3/2} dx = 3*\wurzel{2x-1}[/mm]
[mm]3*\wurzel{2x-1}|_{x\rightarrow1}=3 \ \ \ \Rightarrow f(x) \mbox{ ist differenzierbar}[/mm]
Stimmt das so?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:35 So 30.12.2007 | Autor: | zahllos |
Deine Lösung ist korrekt.
Mit stetig differenzierbar meint man, dass die Funktion in jedem Punkt eine Ableitung hat und die Ableitung in allen Punkten stetig ist.
Diese Funktion ist stetig (da genügt es x = 1 zu untersuchen),
sie ist differenzierbar ( auch wieder nur für x = 1 relevant, wobei es dort nur einseitige Differenzenqoutienten gibt)
und sie ist stetig differenzierbar, da die beiden (einseitigen) Ableitungen bei x = 1 übereinstimmen.
|
|
|
|