www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - stammfkt. u. verständnisfrage
stammfkt. u. verständnisfrage < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stammfkt. u. verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Do 16.04.2009
Autor: mef

Aufgabe
1.)
f(x)= [mm] \bruch{ln(x)}{x} [/mm]

F(x)= [mm] 0,5*(ln(x))^{2} [/mm]



hallo,

meine erste frage bezieht sich auf die oben gestellte stammfunktion, ich komme irgenswie darauf.

2 frage
2.)
verständnisfrage:

wenn nach dem zeitpunkt mit der kleinstmöglichen schadstoffmenge gefragt ist und zufällig die änderungsrate als funktion gegeben ist, wieso muss man dann um den zeitpunkt mit der kleinstmöglichen schadstoffmenge herauszubekommen, die funktion ,die die änderungsrate beschreibt gleich null setzen??????
kriegt man generell die kleinstmögliche, wenn man die änderungsrate geich null setzt?, oder ist auch die gröstmögliche menge möglich rauszukriegen??

        
Bezug
stammfkt. u. verständnisfrage: zu Frage 1
Status: (Antwort) fertig Status 
Datum: 14:13 Do 16.04.2009
Autor: schachuzipus

Hallo mef,

zur 1. Frage:

> 1.)
>  f(x)= [mm]\bruch{ln(x)}{x}[/mm]
>  
> F(x)= [mm]0,5*(ln(x))^{2}[/mm]
>  
>
>
> hallo,
>  
> meine erste frage bezieht sich auf die oben gestellte
> stammfunktion, ich komme irgenswie darauf.
>  

Kommst du oder kommst du nicht?

Substituiere [mm] $u=u(x):=\ln(x)$, [/mm] dann ist [mm] $u'=\frac{du}{dx}=\frac{1}{x}$, [/mm] also $dx=x \ du$

Alles ersetzen gibt [mm] $\int{\frac{\ln(x)}{x} \ dx}=\int{\frac{u}{x} \ x \ du}=\int{u \ du}$ [/mm] ...

Das ist nun ganz einfach zu lösen, am Ende aber noch resubstituieren


LG

schachuzipus

Bezug
                
Bezug
stammfkt. u. verständnisfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Do 16.04.2009
Autor: mef

ich meinte natürlich ich komme nicht drauf:)))

danke erstmal

und die zweite frage???

Bezug
        
Bezug
stammfkt. u. verständnisfrage: zu Frage 2
Status: (Antwort) fertig Status 
Datum: 14:47 Do 16.04.2009
Autor: Roadrunner

Hallo mef!


Bitte stelle in Zukunft unterschiedliche / unabhängige Fragen auch in separaten Threads.


Um die Schadstoffmenge zu erhalten, müsstest Du die Funktion der Änderungsrate zunächst integrieren.

Für die Ermittlung des Extremwertes ist wiederum die 1. Ableitung dieser Stammfunktion erforderlich. Denn die Nullstellen der 1. Ableitung liefern einem die möglichen Extremwerte.

Nun ist aber die Ableitung der Stammfunktion exakt wieder die Ausgangsfunktion.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]