www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - st.part.diffbar
st.part.diffbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

st.part.diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Di 20.05.2008
Autor: AriR

hey leute.

ich hab irgendwie probleme mir den grundsätzlich anschaulichen unterschied zwischen einer stetig partiell diffbaren funktion und einer nur partielle diffbaren funktion zu veranschaulichen... also der unterschied rein formal und von der definiton her ist klar aber wie könnte man sich das zB an einer funktion [mm] f:\IR^2\to \IR [/mm] graphisch veranschaulichen. also wie wirkt sich die stetigkeit der partiellen funktion auf die eigentlich funktion aus??

würde mich über jede hilfe sehr freuen

gruß :)

        
Bezug
st.part.diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Di 20.05.2008
Autor: fred97

Betrachte z. B. die Funktion

f(x,y)= xy/(x²+y²) für (x,y) ungleich (0,0) und f(0,0) = 0.

Diese Funktion ist auf ganz [mm] R^2 [/mm] partiell differenzierbar.
In (0,0) ist sie aber noch nicht einmal stetig ! Also ist sie dort auch nicht differenzierbar, somit kann sie auf [mm] R^2 [/mm] nicht stetig partiell differenzierbar sein.

Plotte sie doch mal

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]