www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - spektraler Abbildungssatz
spektraler Abbildungssatz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

spektraler Abbildungssatz: Verständnisfragen zum Beweis
Status: (Frage) beantwortet Status 
Datum: 10:15 Di 25.10.2005
Autor: Karl_Pech

Hallo allerseits,


Der Satz geht wie folgt:


Gegeben sei ein Matrix-Polynom:


[mm] $P\left(A\right) [/mm] := [mm] \sum_{k=0}^{n}{c_kA^k}$ [/mm] mit $A [mm] \in M\left(n \times n, \mathbb{K}\right)$ [/mm]


Dann gilt:


[mm] $\mathrm{spectrum}\left(P\left(A\right)\right) [/mm] = [mm] P\left(\mathrm{spectrum}\left(A\right)\right)$ [/mm]


und der Beweis dazu:


Für Potenzen von Matrizen gilt Folgendes:


[mm] $A^n [/mm] = [mm] U{\lambda}^nU^{-1}$ [/mm]


Wieso gilt das? Und wie kommt man hier auf dieses $U$?


Wende die obige Eigenschaft auf [mm] $P\left(A\right)$ [/mm] an:


[mm] $P\left(A\right) [/mm] = [mm] \sum_{k=0}^{n}{c_kU{\lambda}^k}U^{-1}$ [/mm]

[mm] $\Leftrightarrow P\left(A\right)U [/mm] = [mm] U\left(\sum_{k=0}^{n}{c_k{\lambda}^k}\right)\qquad \Box$ [/mm]


Und wie hat man hier umgeformt? Außerdem verstehe ich nicht, warum der Beweis hier endet; Müßte man hier nicht noch das $U$ irgendwie "wegkriegen"? Warum stört es hier nicht?



Danke!



Grüße
Karl





        
Bezug
spektraler Abbildungssatz: Versuch einer Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 25.10.2005
Autor: Gnometech


> Hallo allerseits,

Hallo!

>
> Der Satz geht wie folgt:
>  
>
> Gegeben sei ein Matrix-Polynom:
>  
>
> [mm]P\left(A\right) := \sum_{k=0}^{n}{c_kA^k}[/mm] mit [mm]A \in M\left(n \times n, \mathbb{K}\right)[/mm]
>  
>
> Dann gilt:
>  
>
> [mm]\mathrm{spectrum}\left(P\left(A\right)\right) = P\left(\mathrm{spectrum}\left(A\right)\right)[/mm]
>  
>
> und der Beweis dazu:
>  
>
> Für Potenzen von Matrizen gilt Folgendes:
>  
>
> [mm]A^n = U{\lambda}^nU^{-1}[/mm]
>  
>
> Wieso gilt das? Und wie kommt man hier auf dieses [mm]U[/mm]?

  
Ich kann hier nur ein wenig spekulieren. :-) Also, uns interessiert nur das Spektrum, daher kann man $A$ ohne Einschränkung auf die direkte Summe der [mm] Eigenr\A'ume [/mm] einschränken, was de facto darauf hinausläuft anzunehmen, dass $A$ diagonalisierbar ist. Also gibt es eine Diagonalmatrix [mm] $\lambda$, [/mm] deren Einträge gerade die Eigenwerte, also das Spektrum von $A$ bilden, zu der $A$ ähnlich ist, oder auch: $A = U [mm] \lambda U^{-1}$. [/mm]

Und dann ist klar, wie sich Potenzen von $A$ verhalten: [mm] $A^n [/mm] = U [mm] \lambda^n U^{-1}$. [/mm]

> Wende die obige Eigenschaft auf [mm]P\left(A\right)[/mm] an:
>  
>
> [mm]P\left(A\right) = \sum_{k=0}^{n}{c_kU{\lambda}^k}U^{-1}[/mm]
>  
> [mm]\Leftrightarrow P\left(A\right)U = U\left(\sum_{k=0}^{n}{c_k{\lambda}^k}\right)\qquad \Box[/mm]
>  
>
> Und wie hat man hier umgeformt? Außerdem verstehe ich
> nicht, warum der Beweis hier endet; Müßte man hier nicht
> noch das [mm]U[/mm] irgendwie "wegkriegen"? Warum stört es hier
> nicht?

  
Man hat $A$ eingesetzt und dann von rechts mit $U$ multipliziert.

Nimm einen Basisvektor der Standardbasis [mm] $e_i$. [/mm] Dann gilt:

$P(A)U [mm] e_i [/mm] = U [mm] \left( \sum_{k=0}^n c_k \lambda^k \right) e_i [/mm] = U [mm] \left( \sum_{k=0}^n c_k \lambda_i^k e_i \right) [/mm] = [mm] \sum_{k=0}^n c_k \lambda_i^k [/mm] (U [mm] e_i)$ [/mm]

Dabei habe ich die Diagonaleinträge von [mm] $\lambda$ [/mm] einfach [mm] $\lambda_i$ [/mm] genannt. Das waren aber gerade die Eigenwerte von $A$. Zusammengefasst: die Eigenwerte von $P(A)$ erhält man durch Einsetzen der Eigenwerte von $A$ in das Polynom $P$ und das war die Aussage.

Ich hoffe, das passt ungefähr... die Notation mit [mm] $\lambda$ [/mm] als Diagonalmatrix hat mich etwas verwirrt.

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]