www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - sinus und kosinus
sinus und kosinus < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sinus und kosinus: idee
Status: (Frage) beantwortet Status 
Datum: 11:53 Sa 28.05.2011
Autor: luna19

Aufgabe
Man kann die Entfernung x zu einem unzugänglichen Turm im Gelände auch mithilfe des Höhenwinkelmessers bestimmen.Man wählt zwei Messpunkte A und B in einer Linie mit dem Fußpunkt des Turms.Anschließend misst man von beiden Punkten aus den Höhenwinkel zur Spitze des Objekts und die Entfernung x zum Turm in Fig.2

hallo
ich kann die folgende Gleichung nicht auflösen

[mm] 1.tan(25)=\bruch{h}{14+x} [/mm]   aufgelöst nach h
  
   6,53+tan(25)=h

[mm] 2.tan(40)=\bruch{h}{x} [/mm]  

gleichung 1 eingesetzt in gleichung 2 :



[mm] tan(40)=\bruch{6,53+tan(25)*x}{x} [/mm]                | *x


tan(40)*x=6.53+tan(25)*x                                | -6,53


tan(40)*x-6,53=tan(25)*x                 ?




danke!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
sinus und kosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Sa 28.05.2011
Autor: ONeill

Hi!
> [mm]1.tan(25)=\bruch{h}{14+x}[/mm]   aufgelöst nach h

[ok]

> 6,53+tan(25)=h

das kann ich nciht nachvollziehen, wie kommst Du auf 6,53?

> [mm]2.tan(40)=\bruch{h}{x}[/mm]  

[ok]

> gleichung 1 eingesetzt in gleichung 2 :
>  
>
>
> [mm]tan(40)=\bruch{6,53+tan(25)*x}{x}[/mm]                | *x
>  
>
> tan(40)*x=6.53+tan(25)*x                                |
> -6,53
>  
>
> tan(40)*x-6,53=tan(25)*x                 ?

bring alle Teile mit x auf eine Seite, dann kannst Du x ausklammern.

Gruß Christian

Bezug
                
Bezug
sinus und kosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Sa 28.05.2011
Autor: luna19

tan(40)*x=6.53+tan(25)*x            |-tan(25)*x


tan(40)*x-tan(25)*x=6,53

x*(tan(40)-tan(25))=6,53                |/(tan(40)-tan(25))

x                              =17,52m

muss man immer x auf einer Seite seite bringen?

kann man die aufgabe nicht anders lösen?

es gibt doch 3 gleichungssysteme?



Bezug
                        
Bezug
sinus und kosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 28.05.2011
Autor: Diophant

Hallo,

den Tipp von Christian hast du richtig verstanden und umgesetzt. Und nein: anders kann man das nicht machen, zumindest nicht geschickter.

Was meinst du in diesem Zusammenhang mit Gleichungssystemen, das habe ich nicht verstanden?

Gruß, Diophant

Bezug
                                
Bezug
sinus und kosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Sa 28.05.2011
Autor: luna19

es gibt 3 gleichungssysteme

Einsetzungsverfahren

Gleichsetzungsverfahren

Additionsverfahren

Aber es läuft bei allen darauf hinaus ,dass man x auf einer seite bringt und dann ausklammert.

Bezug
                                        
Bezug
sinus und kosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 28.05.2011
Autor: Diophant

Hallo,

da bringst du aber etwas gewaltig durcheinander. Die genannten Verfahren sind Lösungsverfahren für lineare Gleichungssysteme. Darunter versteht man im allgemeinen ein System aus mehreren Gleichungen mit mehreren Unbekannten. Deine Gleichung jedoch ist eine lineare Gleichung in einer Unbekannten, und was hier gemacht wurde, war eine Anwendung des Distributivgesetzes:

a*x=c+b*x <=>
a*x-b*x=c
x*(a-b)=c
x=c/(a-b)

Nun klarer?

Gruß, Diophant

Bezug
                                                
Bezug
sinus und kosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Sa 28.05.2011
Autor: luna19

Deine Gleichung jedoch ist eine lineare Gleichung in einer Unbekannten, ?

das habe ich jetzt  nicht so verstanden



Bezug
                                                        
Bezug
sinus und kosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Sa 28.05.2011
Autor: M.Rex


> Deine Gleichung jedoch ist eine lineare Gleichung in einer
> Unbekannten, ?
>  
> das habe ich jetzt  nicht so verstanden
>
>  

Du hast doch:

tan(40)*x-6,53=tan(25)*x    

und in dieser Gleichung taucht doch nur die Variable x auf, die du ja schon korrekt ermittelt hast. tan(40) und tan(25) sind Zahlen, wie eben auch 6 oder 7 oder 3,45 oder 1/8 oder oder oder.

Marius


Bezug
                                                                
Bezug
sinus und kosinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Sa 28.05.2011
Autor: luna19

achso danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]