www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - sin, cos linear unabhängig
sin, cos linear unabhängig < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sin, cos linear unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 So 21.03.2010
Autor: NightmareVirus

Aufgabe
Beh.: $(sin,cos) [mm] \in (\mathbb{R}^{\mathbb{R}}^2$ [/mm] sind linear unabhängig

Beweis:
Wegen
[mm] $$\alpha [/mm] : [mm] \langle \sin, \cos \rangle \; \to \; \mathbb{R}^2 [/mm] : f [mm] \mapsto (f(0),f(\frac{\pi}{2}))$$ [/mm]
ist linear und [mm] $(\alpha(\sin) [/mm] = (0,1), [mm] \alpha(\cos) [/mm] = (1,0))$ ist linear unabhängig.

Dazu meinte meine Tutorium, dass "wenn ich wirklich verstanden hätte warum [mm] $\sin$ [/mm] und [mm] $\cos$ [/mm] linear unabhängig sind, ich das anders bewiesen hätte". (der Beweis stand so ähnlich im Skript, von daher war die Bemerkung zutreffend).

Nun gut nach kurzer Überlegung bin ich dann auf die Idee gekommen, dass [mm] $\sin$ [/mm] kein Vielfaches von [mm] $\cos$ [/mm] ist. Also:

[mm] $\sin$ [/mm] und [mm] $\cos$ [/mm] sind linear unabhängig, da kein $a [mm] \in \mathbb{R}$ [/mm] existiert mit [mm] $a\cdot\sin(x) [/mm] = [mm] \cos(x) \quad \forall [/mm] x [mm] \in \mathbb{R}$. [/mm]
Insbesondere ist ja $a [mm] \cdot \sin(0) [/mm] = 0 [mm] \neq [/mm] 1 [mm] \cos(0)$ [/mm]

o.k.?

        
Bezug
sin, cos linear unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 21.03.2010
Autor: metalschulze

Hallo,
nun ja die letzte Gleichung ist ja für [mm] \alpha [/mm] = 0 erfüllt....
du müstest jetzt zeigen, dass für einen beliebigen anderen Wert x nicht der gleiche Wert für [mm] \alpha [/mm] rauskommt...
Gruss Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]