www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - simultan diagonalisierbar
simultan diagonalisierbar < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

simultan diagonalisierbar: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:42 Do 23.09.2010
Autor: alina00

Aufgabe
Für die Matrix H [mm] \in [/mm]  Mat(n, n;C) gelte [mm] H^2 [/mm] = 2E.
Zeigen Sie: H und H + E sind simultan diagonalisierbar. Welche Eigenwerte kann die Matrix (H + E) haben?



Hallo, ich grübel hier an einer Aufgabe und komme einfach nicht weiter.
Was ich bisher habe ist folgendes:
Also [mm] H^2=2E [/mm] bedeutet ja,dass [mm] H^2-2E=0 [/mm] also [mm] f=x^2-2 [/mm]
und f(H)=0 dann sind die Eigenwerte v=wurzel(2) und w=-wurzel(2)
simultan diagbar beutet , dass H*(H+E)=(H+E)*H und es gibt ein C sodass
[mm] C^-^1*H*C=D_{1} [/mm] und [mm] C^-^1*(H+E)*C=D_{2} [/mm]
Doch was mache ich jetzt damit??
Danke für alle Antworten im voraus.

        
Bezug
simultan diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Do 23.09.2010
Autor: wieschoo

Ich hoffe das es so geht:
Es gilt: "Zwei diagonalisierbare Endomorphismen sind genau dann simultan diagonalisierbar, fallssie kommutieren."Also
[mm]H(H+E)=H^2+H=H+H^2=(E+H)H[/mm]
Also kommutieren sie beide!

Nun zum Eigenwert von H+E
Du hast herausgefunden, das H diagonalisierbar ist. Also
[mm]S^{-1}HS=D_1[/mm]
Ebenfalls gilt
[mm]D_2=S^{-1}(H+E)S[/mm]
[mm]D_2=S^{-1}HS+S^{-1}ES=S^{-1}HS+E=D_1+E[/mm]
Was sagt das dir über die Eigenwerte aus?

Ich bin mir unsicher, ob noch zu zeigen ist, das (H+E) diagonalisierbar ist.


Bezug
                
Bezug
simultan diagonalisierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Do 23.09.2010
Autor: alina00

Danke für die Antwort, die Eigenwerte von (H+E) unterscheiden sich um 1 von den Eigenwerten von H. Wie würde man denn zeigen dass (H+E) diagbar ist? Das muss man glaube ich schon noch dazu zeigen, denn dass sie kommutieren reicht meiner Meinung nach nicht aus.

Bezug
                        
Bezug
simultan diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 23.09.2010
Autor: wieschoo

Wenn ich noch so einmal darüber nachdenke steht es ja eigentlich hier:
[mm]S^{-1}HS+S^{-1}ES=S^{-1}HS+E=D_1+E [/mm]
Wobei [mm]D_1+E[/mm] eine Diagonalmatrix ist. Also führt eine direkte Rechnung dazu, dass H diagonalisierbar [mm]\Rightarrow[/mm] (H+E) diagonalisierbar
gilt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]