www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - sigma- Algebra
sigma- Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sigma- Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Sa 11.10.2014
Autor: LinaWeber

Aufgabe
Für jedes i [mm] \in [/mm] I sei [mm] \A_{i} [/mm] eine [mm] \sigma-Algebra [/mm] auf [mm] \Omega, [/mm] wobei I [mm] \not= \emptyset [/mm] eine Indexmenge sei. Zeigen sie, dass somit auch :

[mm] A:=\bigcap_{i \in I}^{}\A_{i} [/mm]

eine [mm] \sigma-Algebra [/mm] auf [mm] \Omega [/mm] ist.


Hey,
was eine [mm] \sigma-Algebra [/mm] ist habe ich zumindest bei den einfachen Beispielen verstanden. Die Axiome kenne ich auch. Dennoch hänge ich hier bei der Anwendung fest und hoffe ihr könnt mir helfen.

Ich weiß ja:
1) [mm] \Omega \in \A_{i} [/mm]
2) B [mm] \in \A_{i} [/mm] -> [mm] B^{c} \in \A_{i} [/mm]
3) Ist B-{n} [mm] \in \A_{i} [/mm] -> [mm] \bigcup_{n=1}^{\infty}B-{n} \in \A_{i} [/mm]


so, nun muss ich dies alles ja auch für  [mm] \bigcap_{i \in I}^{}\A_{i} [/mm] zeigen.
Ich scheitere aber hier schon bei dem ersten Axiom. Ich weiß nicht genau, wie ich dies hier zeigen soll, da es ja die Menge der Durchschnitte ist.


Vielleicht kann mir ja jemand weiterhelfen.
Danke schon mal :-)

        
Bezug
sigma- Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Sa 11.10.2014
Autor: DieAcht

Hier stand leider etwas falsches.
Bezug
                
Bezug
sigma- Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Sa 11.10.2014
Autor: Gonozal_IX

Hiho,

die Mitteilung ist absolut nicht zielführend und falsch.
Da steht ein Schnitt von Sigma-Algebren.
Was soll denn das Komplement einer Sigma-Algebra sein und wozu soll man das brauchen?

Gruß,
Gono

Bezug
        
Bezug
sigma- Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Sa 11.10.2014
Autor: Gonozal_IX

Hiho,

erstmal: Bitte versuche doch zumindest deine Fragen halbwegs leserlich hier hinzubekommen. So macht das keinen Spaß :-(

Sei $A = [mm] \bigcap_{i\in I} A_i$ [/mm]

Dann machen wir mal das erste:

z.z: [mm] $\Omega \in [/mm] A$.

Wann ist etwas denn Element eines Schnitts?

Gruß,
Gono



Bezug
        
Bezug
sigma- Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Sa 11.10.2014
Autor: Ladon

Hallo Lina,

in der Tat ist deine Aufgabe nicht sehr schön zu lesen.
Sei auch hier $ A = [mm] \bigcap_{i\in I} A_i [/mm] $.
Zu zeigen ist außer dem, was Gono erwähnte:
2.) [mm] $B\in [/mm] A [mm] \Rightarrow B^c\in [/mm] A$
3.) [mm] $B_n\in [/mm] A$ [mm] $(n\in\IN)$ $\Rightarrow$ $\bigcup_{n\in\IN}B_n\in [/mm] A$
Der Grundgedanke hinter dem Beweis der beiden Aussagen ist die Überlegung, was es überhaupt heißt, dass [mm] $B\in [/mm] A$ oder [mm] $B_n\in [/mm] A$ [mm] $(n\in\IN)$ [/mm] ist, wenn $ A = [mm] \bigcap_{i\in I} A_i [/mm] $. Konkreter: Für welche [mm] $i\in [/mm] I$ ist [mm] $B\in A_i$ [/mm] bzw. [mm] $B_n\in [/mm] A$ [mm] $\forall n\in\IN$? [/mm] Und was folgt dann aus der Eigenschaft, dass [mm] $A_i$ $\sigma$-Algebra [/mm] ist?
Zusammengefasst:
1.) "Übersetze" die Bedeutung des Schnitts.
2.) Eigenschaft der [mm] $\sigma$-Algebren [/mm] ausnutzen.
3.) "Rückübersetzung"

MfG
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]