www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - senkrechte Vektoren
senkrechte Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

senkrechte Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Di 08.10.2013
Autor: Naria

Aufgabe
Wie heißt der Vektor, der senkrecht auf dem gegebenen Vektor steht?

[mm] \vec{a} [/mm] = [mm] \vektor{2 \\ 5} [/mm]

Warum kann man zu einem dreidimensionalen Vektor nicht ohne weitere einen eindeutigen senkrechten Vektor angeben?

Ich sitze jetzt hier und überlege wie ich das im 2-dimensionalen löse? Ohne Skalarprodukt oder ähnliches, da mein Bruder dieses noch nicht hatte (er kann mir leider auch nicht sagen, was er überhaupt schon hatte :D)

Löse ich das einfach zeichnerich??? Oder mit Hilfe einer Normale? Aber dann muss der Vektor ja als Ortsvektor fungieren, da ich sonst nur einen Punkt habe?

Also ich weiß, dass es bestimmt total einfach sein wird..aber ich habe die Vektorrechnung schon ewig nicht mehr gemacht und hoffe, dass mir jemand kurz einen Gedankenanstoß geben kann.

Vielen Dank schonmal :)



        
Bezug
senkrechte Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Di 08.10.2013
Autor: M.Rex

Hallo

> Wie heißt der Vektor, der senkrecht auf dem gegebenen
> Vektor steht?

>

> [mm]\vec{a}[/mm] = [mm]\vektor{2 \\ 5}[/mm]

>

> Warum kann man zu einem dreidimensionalen Vektor nicht ohne
> weitere einen eindeutigen senkrechten Vektor angeben?
> Ich sitze jetzt hier und überlege wie ich das im
> 2-dimensionalen löse?


Der Vektor [mm] \vektor{2\\5} [/mm] bedeutet ja, dass du von einem (beliebigen) Punkt im Koordinatensystem 2 Einheiten waagerecht (parallel zur x-Achse) und 5 Einheiten senkrecht (parallel zur y-Achse) gehst.
Das führt zu einem Steigungsdreieck, dessen Steigung hier [mm] m=\frac{5}{2} [/mm]

Nun kennst du sicher aus der Mittelstufe, dass zwei Geraden mit den Steigungen [mm] m_{1} [/mm] und [mm] m_{2} [/mm] genau dann orthogonal zueinander stehen, wenn [mm] m_{1}=-\frac{1}{m_{2}} [/mm]

Zu [mm] m=\frac{5}{2} [/mm] gehört also die Orthogonale Steigung [mm] m_{\perp}=-\frac{2}{5} [/mm]

Das führt also zuden beiden möglichen senkrechten Vektoren [mm] \vec{a_{\perp}}=\vektor{-5\\2} [/mm] oder [mm] \vec{a_{\perp}}=\vektor{5\\-2} [/mm]

In Dreidimensionalen funktioniert das ganze aber nicht, stelle mal einen Stift senkrecht auf den Tisch. Alle Vektoren, die in der Tischplatte liegen, sind zu diesem senkrecht, es ist also kein eindeutiger Vektor gegeben, der zu einem dreidimensionalen Vektor senkrecht steht.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]