www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - schwingungsgleihung
schwingungsgleihung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwingungsgleihung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Fr 27.10.2006
Autor: chrisigo

hallo,

hab ein problem mit der folgenden aufgabe:

ich soll nachweisen, dass auch die zeit-weg-funktion:
[mm] y=A*\cos(w*t+\alpha) [/mm]
die differenzialgleichung erfüllt.

A= amplitude
w= kreisfrequenz
y= elongation

normalerweise lautet die funktion ja:

[mm] y=A*\sin(w*t+\alpha) [/mm]

wie soll ich dies hier nun beweisen.
könntet ihr mir hierbei bitte helfen?


liebe grüße und danke schonmal im voraus

chris

        
Bezug
schwingungsgleihung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Fr 27.10.2006
Autor: leduart

Hallo
Du hättest "eure" Differentialgleichung hinschreiben sollen.
weenn sie lautet y''(t)=-k*y(t) für k kannst du auch was anderes einsetzen,
Dann leite einfach deinen cos 2 mal ab, setz in die Dgl ein, und stell fest dass die Geleichung für [mm] w=\wurzel{k}erfüllt [/mm] ist. das ist alles.
Vom physikalischen her gesehen ist es auch klar, da sin und cos ja nur gegeneinander verschoben sind, wenn du also den Zeitpunkt 0 anders setzt hast du ne cos Fkt. ausserdem ist [mm] sin(wt+\pi/2)=cos(wt) [/mm]
Gruss leduart.

Bezug
                
Bezug
schwingungsgleihung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:56 Fr 27.10.2006
Autor: chrisigo

hi,

erstmals danke für deine schnelle antwort um diese uhrzeit......


also wenn ich cos zeimal ableite kommt ja wieder sin raus oder...
und wie setze ich das jetzt in die gleichung ien......???


p.s. sorry dass ich die gleichung nicht eingegeben habe....liegt wahrscheinlich an der uhrzeit.. sorry



liebe grüße

chris

Bezug
                        
Bezug
schwingungsgleihung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Fr 27.10.2006
Autor: Event_Horizon

Dann fragen wir nochmal:

Was ist cos abgeleitet?

Und WAS ist dann diese Ableitung NOCHMAL abgeleitet?

Bezug
                                
Bezug
schwingungsgleihung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 28.10.2006
Autor: chrisigo

hallo,


die aufgabe lautete ja, dass ich nachweisen soll, dass auch die zeit weg funktion
y= A cos [mm] (wt+\alpha) [/mm] die differenzielgleichung
m * y'' = -D * y erfüllt.

nun habe ich folgendes unternommen:

y''= -w² * A [mm] cos(wt+\alpha) [/mm]
   = -w²*y

daraus folgt:

-m * w² * y   =  -D * y

ist dies somit bewiesen, bzw. richtig.

liebe grüße
chris

Bezug
                                        
Bezug
schwingungsgleihung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Sa 28.10.2006
Autor: Event_Horizon

Ja! Ich weiß zwar nicht, wo du das y hernimmst, aber ansonsten ist das korrekt.

Um zu zeigen, daß ein Ansatz eine DGL erfüllt, setzt du den Ansatz ein, und schaust, ob daduch eine Gleichung entsteht, in der kein - in diesem Fall - t  mehr drin steht. Du hast ne Reihe von Werten aus der Gleichung und eine Reihe von Parametern aus dem Ansatz, und kannst die Parameter durch die Werte ausdrücken. In dem Fall kannst du das [mm] \omega [/mm] aus dem Ansatz durch D und m aus der DGL ausdrücken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]