www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - schwache Lösung
schwache Lösung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwache Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Do 30.06.2011
Autor: hula

Hallo!

Ich habe nur eine Frage betreffend einem Satz aus einem Buch. Wenn ich folgendes Problem lösen möchte:

[mm] \Delta u =0 [/mm] in einer offenen beschränkten Teilmenge der $\ [mm] \IR^n$ [/mm]
[mm] u=0 [/mm] auf dem Rand

Wobei der Rand als "schön" angenommen wird. Ich habe nun eine schwache Lösung t in $\ [mm] H^1 [/mm] $ gefunden. Wenn man nun sagt, dass

[mm] \bruch{\partial t}{\partial x_i} [/mm]

Die Gleichung ebenfalls löst, dann meint man das wie folgt:

[mm] \Delta (\bruch{\partial t}{\partial x_i}) =(\bruch{\partial }{\partial x_i}) \Delta t = (\bruch{\partial t}{\partial x_i}) (0) =0[/mm]

Oder vestehe ich dies falsch?

mfg

hula

        
Bezug
schwache Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 20.07.2011
Autor: MatthiasKr

Hallo,

> Hallo!
>  
> Ich habe nur eine Frage betreffend einem Satz aus einem
> Buch. Wenn ich folgendes Problem lösen möchte:
>  
> [mm]\Delta u =0[/mm] in einer offenen beschränkten Teilmenge der [mm]\ \IR^n[/mm]
>  
> [mm]u=0[/mm] auf dem Rand
>  
> Wobei der Rand als "schön" angenommen wird. Ich habe nun
> eine schwache Lösung t in [mm]\ H^1[/mm] gefunden. Wenn man nun
> sagt, dass
>
> [mm]\bruch{\partial t}{\partial x_i}[/mm]
>
> Die Gleichung ebenfalls löst, dann meint man das wie
> folgt:
>  
> [mm]\Delta (\bruch{\partial t}{\partial x_i}) =(\bruch{\partial }{\partial x_i}) \Delta t = (\bruch{\partial t}{\partial x_i}) (0) =0[/mm]
>  
> Oder vestehe ich dies falsch?

falls diese Frage noch jemanden interessiert:
ganz so einfach ist es nicht, da dein $t$ (ungewöhnliche bezeichnung für eine funktion übrigens) ja nur schwache lösung der PDG ist. Du kannst also im allgemeinen nicht ohne weiteres eine punktweise, klassische ableitung berechnen. Insofern müsste man wohl sowieso dazusagen, dass [mm] $\bruch{\partial t}{\partial x_i}$ [/mm] im schwachen, distributions-sinne zu verstehen ist. dieses würde ich dann in die schwache formulierung der PDG einsetzen und versuchen, die gewünschte aussage zu beweisen (ableitung durch partielle integration auf testfunktion übertragen).

Gruss
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]