www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - schnittpunkte 2er graphen
schnittpunkte 2er graphen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schnittpunkte 2er graphen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 18.12.2004
Autor: icke85

hallo leute ,

ich habe 2 funktionen

               1        4
f1 = [x [mm] \mapsto [/mm] - --- [mm] x^{2} [/mm] + ---]     ist eine parabel
               6        3
und

f2 = [x [mm] \mapsto [/mm] - x + 4]         ist eine gerade


die sich bei mir nicht schneiden und die parabel nach unten offen ist
liege ich da richtig ?
denn ich soll die schnittpunkte bestimmen aber ich find keine !

ist sehr wichtig danke !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
schnittpunkte 2er graphen: Keine Schnittpunkte !!
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 18.12.2004
Autor: Loddar

Hallo icke85,

[willkommenmr] !!

Probier Dich ruhig mal an dem Formeleditor. SOOOO schwer ist das wirklich nicht ... ;-) Aber es macht die Aufgaben / Fragen hier um ein Vielfaches lesbarer.

[mm] $f_1(x) [/mm] = [mm] -\bruch{1}{6}x^2 [/mm] + [mm] \bruch{4}{3}$ [/mm]
[mm] $f_2(x) [/mm] = -x + 4$

>  liege ich da richtig ?
> denn ich soll die schnittpunkte bestimmen aber ich find
> keine !

Also wenn du Dich in Deiner Aufgabenstellung nicht verschrieben haben solltest, hast Du recht:
Auch ich habe keine Schnittpunkte der beiden o.g. Funktionen erhalten.

Muß es denn welche geben? Sonst kontrollier' nochmals die ursprüngliche Aufgabenstellung ...

Grüße + ein schönes Wochenende
Loddar

Bezug
        
Bezug
schnittpunkte 2er graphen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:36 Sa 18.12.2004
Autor: icke85

mensch loddar , danke für deine schnelle antwort ich hab gerade noch mal genauer hingeschaut was ich schrieb , also für  f1  steht bei mir nach

4                                  1       4
--  noch ein x also f1 = [x [mm] \mapsto [/mm] - --- x² + --- x   aber ich hab
3                                  6       3
  
solche funktion noch nicht gesehen.      
kann das ein druckfehler sein ?  

ich soll auch die gerade f2 so parallel verschieben , dass sie an der stelle
x = 7 nur noch einen gemeinsamen punkt mit der parabel hat .
aber irgenwie haut das alles nicht hin oder ?       fragt icke

Ps: und das mit den eingabehilfen schaue ich mir bei gelegenheit mal an !!!!!!





> hallo leute ,

>
> ich habe 2 funktionen
>  
> 1        4
>  f1 = [x [mm]\mapsto[/mm] - --- [mm]x^{2}[/mm] + ---]     ist eine parabel
>                 6        3
>  und
>  
> f2 = [x [mm]\mapsto[/mm] - x + 4]         ist eine gerade
>  
>
> die sich bei mir nicht schneiden und die parabel nach unten
> offen ist
>  liege ich da richtig ?
> denn ich soll die schnittpunkte bestimmen aber ich find
> keine !
>  
> ist sehr wichtig danke !
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
>  


Bezug
                
Bezug
schnittpunkte 2er graphen: schau mal hier
Status: (Antwort) fertig Status 
Datum: 21:58 Sa 18.12.2004
Autor: informix

Hallo Icke,
> mensch loddar , danke für deine schnelle antwort ich hab
> gerade noch mal genauer hingeschaut was ich schrieb , also
> für  f1  steht bei mir nach
>  
> 4                                  1       4
>  --  noch ein x also f1 = [x [mm]\mapsto[/mm] - --- x² + --- x  
> aber ich hab
>  3                                  6       3

also: [mm] $f_1(x) [/mm] = [mm] -\bruch{1}{6}x^2 [/mm] + [mm] \bruch{4}{3}x$ [/mm]

> solche funktion noch nicht gesehen.      
> kann das ein druckfehler sein ?  

nein, kein Druckfehler, sondern eine verschobene Parabel:
[Dateianhang nicht öffentlich]
Ich habe auch mal gleich die Gerade eingezeichnet.

> ich soll auch die gerade f2 so parallel verschieben , dass
> sie an der stelle
>   x = 7 nur noch einen gemeinsamen punkt mit der parabel
> hat .

Du siehst, jetzt haben die Parabel und die Gerade noch 2 gemeinsame Punkte.

> aber irgenwie haut das alles nicht hin oder ?       fragt
> icke
>  
> Ps: und das mit den eingabehilfen schaue ich mir bei
> gelegenheit mal an !!!!!!

Da freuen wir uns, weil man dann die Terme besser lesen kann.

So, und jetzt sollst du die Gerade parallel verschieben: dabei bleibt natürlich ihre Steigung die gleiche! Also suchst du jetzt eine Gerade, die durch den Punkt geht, der den x-Wert 7 hat und auf der Parabel liegt.
Weißt du, wie du seinen y-Wert ausrechnen kannst?
Durch diesen Punkt geht dann auch die neue Gerade, deren Achsenabschnitt du noch neu bestimmen musst, weil die Steigung sich ja nicht ändert.
So, jetzt habe ich dir einige Tipps gegeben.
Kannst du die Aufgabe jetzt lösen?


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]