www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - rekursion->iteration - prob
rekursion->iteration - prob < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursion->iteration - prob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mi 29.09.2004
Autor: psjan

Hallo alle,
ich wurschtele schon seit einigen Tagen an diesem (wahrscheinlich trivialen) Problem herum. Es kommt aus dem Buch von Krengel "Einführung in die Wahrscheinlichkeitstheorie und Statistik" und dort aus dem §14, ist aber eher Analysis als Wahrscheinlichkeitstheorie. Dort hat man einen Vektor [mm] (\alpha_i)_{i=0,\ldots,b} [/mm] von unbekannten Wahrscheinlichkeiten mit den Randbedingungen [mm] \alpha_0=1 [/mm] und [mm] \alpha_b=0 [/mm] und folgende "Rekursion":
[mm] \alpha_i=p\alpha_{i+1} [/mm] + [mm] q\alpha_{i-1} [/mm] für [mm] 0 wobei [mm]p[/mm] und [mm]q[/mm] zwei Wahrscheinlichkeiten sind mit [mm]p+q=1[/mm].
Jetzt wird gesagt, dass man diese Rekursion durch folgenden Ansatz lösen könne:
[mm]\alpha_i=c+d \left( \bruch{q}{p} \right)^i[/mm]
mit reellen Zahlen [mm]c[/mm] und [mm]d[/mm].
Für [mm]p=q=1/2[/mm] konnte ich eine andere (aber ebenfalls im Krengel genannte) Formel nachrechnen, aber für den anderen Fall mit der oben angebenen Formel hatte ich keinen Erfolg.
Ich habe mal versucht, die ursprüngliche Rekursion in eine "normale" umzurechnen, wo dann [mm] \alpha_i [/mm] von [mm] \alpha_{i-1} [/mm] und [mm] \alpha_{i-2} [/mm] abhängt und diese mal weitergerechnet, aber die Terme wurden immer schlimmer und ich habe nicht gesehen, wie ich dann noch zum Ziel hätte kommen sollen. Auch die ursprüngliche Formel wollte ich mal zu den beiden "Enden" durchlaufen lassen, aber da kam auch irgendwie nix Vernünftigtes raus.

Mich interessiert hier mehr eine Herleitung / Konstruktion der iterativen Version als ein Beweis, der nur die Richtigkeit zeigt.
Vielleicht sieht man das ja ganz einfach *hoff* :)

Für Anregungen bin ich sehr dankbar!

psjan


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
rekursion->iteration - prob: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mi 29.09.2004
Autor: Hugo_Sanchez-Vicario

mach dich mal frei von den gedanken an wahrscheinlichkeitsrechnung und betrachte die [mm] a_i [/mm] als unbekannte [mm] x_i. [/mm]

die rekursionsformel [mm]a_i=p*a_{i-1}+q*a_{i+1}[/mm] läßt sich schreiben als

[mm]p*x_{i-1} - 1*x_{i} + q*x_{i+1}=0, i\in\{1,\dots,b-1\} [/mm]
[mm]x_{0}=0, x_{b}=1[/mm]

das gibt ein lineares gleichungssystem, das sich lösen läßt.

versuch es doch mal mit einem solchen ansatz.

dein problem ist ja, dass du im prinzip von keiner seite anfangen kannst und die ausdrücke immer komplizierter werden. genau dasselbe ist der fall, wenn du versuchst, ein LGS zu lösen, indem du eine Unbekannte nach der anderen durch auflösen und wieder einsetzen eliminierst.

Bezug
                
Bezug
rekursion->iteration - prob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Do 30.09.2004
Autor: psjan

Vielen Dank für die schnelle Antwort,
das ist eine gute Idee mit dem LGS. Nur leider komme ich so auf genauso unangenehme Dinge wie bei meinem ersten Ansatz (sie sehen sich sogar verdächtig ähnlich!). Die Antwort von stefan geht da schon eher die Richtung, in der ich mir eine Lösung erhoffe.
Trotzdem vielen Dank für die Anregung, denn es ist immer wichtig, neue Impulse zu bekommen, wenn man sich "festgedacht" hat.

Grüße
psjan

Bezug
        
Bezug
rekursion->iteration - prob: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 29.09.2004
Autor: Stefan

Hallo psjan!

Ich denke mal, wie man dann auf die Lösung im Krengel kommt, ist klar, oder? Das ist ja nur einsetzen und auflösen.

Was dich interessiert, ist die Tatsache, warum man einen affin-exponentiellen Ansatz wählt.

Nun ja, ich habe mir Folgendes dazu überlegt.

Es gilt wegen $p+q=1$:

$p [mm] \cdot (\alpha_{j+1} [/mm] - [mm] \alpha_j) [/mm] = q [mm] \cdot (\alpha_j [/mm] - [mm] \alpha_{j-1})$. [/mm]

Summiert man von $j=1$ bis $i-1$, so erhält man:

$p [mm] \cdot (\alpha_i [/mm] - [mm] \alpha_1) [/mm] = q [mm] \cdot (\alpha_{i-1} [/mm] - 1)$.

Daraus folgt:

[mm] $\alpha_i [/mm] - [mm] \alpha_1 [/mm] = [mm] \frac{q}{p} \cdot (\alpha_{i-1} [/mm] - 1)$.

Daran sieht man: Es gibt ein $c$ mit

   [mm] $\alpha_i [/mm] - c = [mm] \frac{q}{p} \cdot (\alpha_{i-1} [/mm] -c)$,  

und diese Differenzengleichung wird offenbar durch den Ansatz

Dies ist ein Indiz dafür, dass die Differenzengleichung durch

[mm] $\alpha_i [/mm] = d [mm] \cdot \left( \frac{q}{p} \right)^i [/mm] + c$

mit noch unbekannten $c$ und $d$ gelöst wird (für eine genauere Untersuchung betrachte man die Theorie der Differenzengleichungen mit konstanten Koeffizienten).


Die unbekannten Koeffizienten $c$ und $d$  erhält man dann durch die Randbedingungen. (Ich nehme mal an, das ist dir dann klar. Oder?)

Liebe Grüße
Stefan

Bezug
                
Bezug
rekursion->iteration - prob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 30.09.2004
Autor: psjan

Hallo stefan,
Vielen Dank auch für Deine Antwort. Du hast es genau getroffen. Meine Frage war: Warum ein affin-exponentieller Ansatz? Dein Weg sieht wirklich gut aus, nur habe ich eine kleine Frage dazu:
Der Schritt von der Gleichung
$ [mm] \alpha_i [/mm] - [mm] \alpha_1 [/mm] = [mm] \frac{q}{p} \cdot (\alpha_{i-1} [/mm] - 1) $
zum Schluss, dass es dann ein $c$ gibt mit:
$ [mm] \alpha_i [/mm] - c = [mm] \frac{q}{p} \cdot (\alpha_{i-1} [/mm] -c) $.
Sagst Du damit nicht auch, dass [mm] $c=\alpha_1=1$ [/mm] sein muss? Stimmt das?
Ich sehe aber andererseits, dass man aber genau dieses $c$ auf beiden Seiten der Gleichung braucht (und kein $c'$ auf einer Seite), sonst kommt man mit Deiner neuen Rekursionsgleichung nicht zum Ziel, oder?
Ich hoffe, ich frage hier nicht nach dem _unglaublich_ Offensichtlichen ...

Auf jeden Fall schon mal vielen Dank!
psjan

Bezug
                        
Bezug
rekursion->iteration - prob: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 30.09.2004
Autor: Stefan

Hallo psjan!

Du hast Recht: Der Schluss mit der Existenz des $c$ war i.A. Quatsch, [sorry], da war ich zu voreilig (passte halt so gut ;-)).

Also kann die Gleichung

[mm] $\alpha_i [/mm] - [mm] \alpha_1 [/mm] = [mm] \frac{q}{p} \cdot (\alpha_{i-1} [/mm] - 1)$

nur ein Indiz dafür sein, dass ein affin-exponentieller Ansatz zum Ziel führen könnte. Mehr sehe ich im Moment nicht rauszuholen.

Liebe Grüße
Stefan

Bezug
                        
Bezug
rekursion->iteration - prob: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Fr 01.10.2004
Autor: Brigitte

Hallo ihr beiden!

Ich möchte versuchen, Stefans Ansatz noch ein wenig weiterzudenken.
Stehen geblieben wart ihr ja im Wesentlichen bei

[mm]\alpha_i - \alpha_1 = \frac{q}{p} \cdot (\alpha_{i-1} - 1).[/mm]

Daraus folgt die Rekursion

[mm]\alpha_i = \frac{q}{p} \cdot \alpha_{i-1} + \alpha_1- \frac{q}{p},\quad i=1,\ldots,b,[/mm]

die von der Form

[mm]\alpha_i = f\cdot \alpha_{i-1} + g[/mm]

ist. Schauen wir uns mal die ersten Glieder an:

[mm] \alpha_1= f\cdot \alpha_0 + g,[/mm]

[mm] \alpha_2= f\cdot \alpha_1 + g=f^2 \alpha_0+fg+g,[/mm]

[mm] \alpha_3= f\cdot \alpha_2 + g=f^3 \alpha_0++f^2g+fg+g,[/mm]

[mm]\vdots[/mm]

[mm]\alpha_i = f^i \alpha_0 + g\sum\limits_{k=0}^{i-1} f^k = f^i \alpha_0 + g\frac{1-f^i}{1-f} =\left( \alpha_0-\frac{g}{1-f}\right) f^i + \frac{g}{1-f}[/mm]

Daran erkennt man den Ansatz

[mm]\alpha_i = c \left(\frac{q}{p} \right) ^i + d[/mm]

Ich bin jetzt nicht ganz sicher, ob euch das nicht ohnehin schon völlig klar war. Aber der Vollständigkeit halber (und weil die Frage als teilweise beantwortet markiert war) habe ich das mal noch hinzugefügt.

Liebe Grüße
Brigitte

Bezug
                                
Bezug
rekursion->iteration - prob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 Fr 01.10.2004
Autor: Stefan

Liebe Brigitte!

Da habe ich wohl nicht konsequent zu Ende gerechnet. Vielen Dank für deine Ergänzung! :-)

Jetzt sollte der Ansatz klar und die Frage endgültig beantwortet sein, sehr schön! [sunny]

Liebe Grüße
Stefan

Bezug
                                
Bezug
rekursion->iteration - prob: Danke!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Fr 01.10.2004
Autor: psjan

Ohmann, danke Euch beiden ...

endlich kann ich weiterlesen ;)

Grüße
psjan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]