regularitaet des rands < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
hallo,
wir haben in der vorlesung pdgl folgende definition erhalten, die ich anschaulich ueberhaupt nicht verstehe:
sei omega [mm] \subset \|R^n [/mm] ein gebiet. man sagt [mm] \partial [/mm] omega [mm] \in C^m, [/mm] wenn man fuer jedes Kompaktum K, endlich viele (lokale) kartesische Koordinatensysteme [mm] {y_1^(i),y_2^(i),....,y_n^(i)} [/mm] und funktionen phi^(i) [mm] \in C^m(\|R^{n-1}) [/mm] hat derart, dass es
a) offene Bloecke B^(i) = {y [mm] \in \|R^n;a_1^{i} [/mm] < [mm] y_1^{i} [/mm] < [mm] b_1^{i}} [/mm] gibt, die [mm] \partial [/mm] omega [mm] \cap [/mm] K ueberdecken,und
b) omage [mm] \cap [/mm] B^(i) = [mm] {y_n^(i) > phi^(i)(y_1^(i),y_2^(i),...,y_(n-1)^(i));y \in B^(i)} \cap [/mm] B^(i).
Vielleicht kann mir jemand mal sagen, was genau man sich da anschaulich vorstellen kann ? waere sehr nett ...
gruesse,
planloser
|
|
|
|
Hi planloser,
> hallo,
>
> wir haben in der vorlesung pdgl folgende definition
> erhalten, die ich anschaulich ueberhaupt nicht verstehe:
>
> sei omega [mm]\subset \|R^n[/mm] ein gebiet. man sagt [mm]\partial[/mm]
> omega [mm]\in C^m,[/mm] wenn man fuer jedes Kompaktum K, endlich
> viele (lokale) kartesische Koordinatensysteme
> [mm]{y_1^(i),y_2^(i),....,y_n^(i)}[/mm] und funktionen phi^(i) [mm]\in C^m(\|R^{n-1})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> hat derart, dass es
>
> a) offene Bloecke B^(i) = {y [mm]\in \|R^n;a_1^{i}[/mm] < [mm]y_1^{i}[/mm] <
> [mm]b_1^{i}}[/mm] gibt, die [mm]\partial[/mm] omega [mm]\cap[/mm] K ueberdecken,und
>
> b) omage [mm]\cap[/mm] B^(i) = [mm]{y_n^(i) > phi^(i)(y_1^(i),y_2^(i),...,y_(n-1)^(i));y \in B^(i)} \cap[/mm]
> B^(i).
>
> Vielleicht kann mir jemand mal sagen, was genau man sich da
> anschaulich vorstellen kann ? waere sehr nett ...
>
also anschaulich heisst das folgendes: man kann den rand des gebietes lokal als graph von funktionen [mm] $\phi_i$ [/mm] darstellen, die die geforderte regularitaet haben. Und darueber hinaus liegt das gebiet dann genau auf einer seite des graphen.
gruss
matthias
> gruesse,
>
> planloser
>
|
|
|
|