www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - reflektierender Lichtstrahl
reflektierender Lichtstrahl < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reflektierender Lichtstrahl: Winkelformel?
Status: (Frage) beantwortet Status 
Datum: 17:53 So 07.11.2004
Autor: Reaper

geg.: Ein vom Punkt P=(1,2,-3) ausgehender Lichtstrahl trifft im Punkt S=(4,-2,-1) auf die Ebene  [mm] \varepsilon: [/mm] x+2y+2z = -2
Berechnen Sie die Richtung des reflektierenden Strahls.

Ist mein Ansatz richtig?:

Also: Wir wissen PS und den Normalvektor der Ebene. Jetzt bringen wir den Normalvektor zum Punkt S mittels n.s

Dadurch dass ich jetzt 2 Vektoren gegeben habe kann ich mir nun den Winkel zwischen diesen beiden Vektoren ausrechnen mittels der Winkelfunktion cos(a) = (PS . N) / ((norm(PS).norm(N))
beträgt 42,031Grad
Der reflektierende Strahl RS hat jetzt die Eigenschaft dass er mit PS den Winkel 2.Grad einschließt, oder?
Tja und wenn ich jetzt cos(84,0622) = (PS . RS) / ((norm(PS).norm(RS)) mit der Unbekannten RS habe ich auf einmal 3 Unbekannte x,y und z
Weiss irgendwer ob ich richtig liege oder ob die Aufgabe ganz anders funktioniert?

        
Bezug
reflektierender Lichtstrahl: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mo 08.11.2004
Autor: Marc

Hallo Reaper!

> geg.: Ein vom Punkt P=(1,2,-3) ausgehender Lichtstrahl
> trifft im Punkt S=(4,-2,-1) auf die Ebene  [mm]\varepsilon:[/mm]
> x+2y+2z = -2
>  Berechnen Sie die Richtung des reflektierenden Strahls.
>  
> Ist mein Ansatz richtig?:
>  
> Also: Wir wissen PS und den Normalvektor der Ebene. Jetzt
> bringen wir den Normalvektor zum Punkt S mittels n.s
>  
> Dadurch dass ich jetzt 2 Vektoren gegeben habe kann ich mir
> nun den Winkel zwischen diesen beiden Vektoren ausrechnen
> mittels der Winkelfunktion cos(a) = (PS . N) /
> ((norm(PS).norm(N))
>  beträgt 42,031Grad
>  Der reflektierende Strahl RS hat jetzt die Eigenschaft
> dass er mit PS den Winkel 2.Grad einschließt, oder?
>  Tja und wenn ich jetzt cos(84,0622) = (PS . RS) /
> ((norm(PS).norm(RS)) mit der Unbekannten RS habe ich auf
> einmal 3 Unbekannte x,y und z
>  Weiss irgendwer ob ich richtig liege oder ob die Aufgabe
> ganz anders funktioniert?

Das wird schwierig... (wird aber wohl möglich sein).

Ganz kurz:
Ich würde eine Hilfsgerade g aufstellen, die durch S geht und als Richtungsvektor den Normalenvektor der Ebene hat.

Jetzt kannst du den P einfach an dieser Gerade spiegeln, indem du das Lot von P auf die Gerade fällst und den Lotfußpunkt F ermittelst.
Das geht in meiner Vorstellung recht einfach, indem du erst eine Hilfsebene [mm] E_2 [/mm] aufstellst, die parallel zu E ist und durch den Punkt P geht, und dann [mm] E_2 [/mm] mit g schneidest -- dieser Schnittpunkt ist F.

Nun gilt: [mm] $\overrightarrow{PF}=\overrightarrow{FP'}$, [/mm] wobei P' der gespiegelte Punkt sein soll.

[mm] $\overrightarrow{SP'}$ [/mm] ist dann die Richtung des reflektierten Strahl..

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]