www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - rechtwinkliges Dreieck
rechtwinkliges Dreieck < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechtwinkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 07.06.2010
Autor: Salamence

Aufgabe
Sei ABC ein Dreieck mit den Punkten A, B, C, den Seiten a, b, c und den Winkeln [mm] \alpha, \beta, \gamma [/mm] mit [mm] \gamma=90° [/mm] mit üblicher Bezeichungsweise.
Die Strecke a werde um [mm] \Delta [/mm] a verlängert [mm] \gamma [/mm] bleibe erhalten.
z.z.: [mm] \Delta a=\bruch{b*\Delta\alpha}{cos^{2}(\alpha)} [/mm]

Hallihallo!

Das ist ja eigentlich nur ein bisschen Geometrie... Aber trotzdem scheiter ich irgendwie total dabei, das zu verifizieren...
Ich hab mich schon mit Sinussatz und so rumgequält, kam aber zu keinen vernünftigen Ergebnissen, nur sowas mit ner Wurzel und unschönen Winkeln...

Das kann doch nicht so schwer sein -_-

        
Bezug
rechtwinkliges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Mo 07.06.2010
Autor: M.Rex

Hallo

Wenn du a um [mm] \Delta{a} [/mm] verlängerst, verlängerst du ja quasi automatisch auch b, nennen wir diese Verlängerung mal [mm] \Delta{b} [/mm]

Dann gilt mit dem Strahlensatz:

[mm] \bruch{a+\Delta{a}}{a}=\bruch{b+\Delta{b}}{b} [/mm]

Und es gilt, nach der Definition des Tangens am Rechtwinklichen Dreieck:

[mm] \tan(\alpha)=\bruch{a}{b}, [/mm] aber eben auch [mm] \tan(\alpha)=\bruch{a+\Delta{a}}{b+\Delta{b}} [/mm]

Kommst du damit erstmal weiter?

Marius

Bezug
                
Bezug
rechtwinkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 07.06.2010
Autor: Salamence


> Hallo
>  
> Wenn du a um [mm]\Delta{a}[/mm] verlängerst, verlängerst du ja
> quasi automatisch auch b, nennen wir diese Verlängerung
> mal [mm]\Delta{b}[/mm]
>  
> Dann gilt mit dem Strahlensatz:
>  
> [mm]\bruch{a+\Delta{a}}{a}=\bruch{b+\Delta{b}}{b}[/mm]
>  
> Und es gilt, nach der Definition des Tangens am
> Rechtwinklichen Dreieck:
>  
> [mm]\tan(\alpha)=\bruch{a}{b},[/mm] aber eben auch
> [mm]\tan(\alpha)=\bruch{a+\Delta{a}}{b+\Delta{b}}[/mm]
>  
> Kommst du damit erstmal weiter?
>  
> Marius


Moment. Wie? Nein, b bleibt konstant. Ändern tut sich nur der Winkel [mm] \alpha [/mm] und die Strecke gegenüber von [mm] \alpha, [/mm] also a.
Ich drück das am besten mal etwas verständlicher aus mit kartesischen Koordinaten: A=(0,b) B=(a,0) C=(0,0) [mm] B'=(a+\Delta [/mm] a,0)
[mm] \alpha [/mm] ist der Winkel des Dreiecks ABC und jetzt soll [mm] \Delta [/mm] a in Abhängigkeit vom Winkel [mm] \alpha [/mm] und von der Winkeländerung [mm] \Delta \alpha [/mm] ausgedrückt werden.

Bezug
                        
Bezug
rechtwinkliges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mo 07.06.2010
Autor: fred97

verlängert  man a um [mm] \Delta [/mm] a, so verlängert sich c um [mm] \Delta [/mm] c

Dann:

$ [mm] \bruch{a+\Delta{a}}{a}=\bruch{c+\Delta{c}}{c} [/mm] $

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]