www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - rationaler Integrand
rationaler Integrand < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rationaler Integrand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 03.02.2009
Autor: MaRaQ

Aufgabe
[mm] \integral{\bruch{2x^3 - 3x + 1}{x+1}dx} [/mm] = ?

Ich habe hier erst einmal eine Polynomdivison mit Rest durchgeführt, um den Bruch aufzulösen.

Daraus erhalte ich:

[mm] \integral{\bruch{2x^3 - 3x + 1}{x+1}dx} [/mm] = [mm] \integral{2x^2 - 2x - 1 + \bruch{2}{x+1} dx} [/mm] = [mm] \bruch{2}{3}x^3 [/mm] - [mm] x^2 [/mm] - x + 2ln|x+1| + C

Das geht ja noch wunderschön auf (ich hoffe, ich habe mich da nicht verrechnet).

Aber wie müsste ich denn vorgehen, wenn ich z.B. den Kehrwert obiger Funktion integrieren müsste? Also wenn bei einem rationalen Integranden der Nennergrad größer ist, als der Zählergrad und ich keine "bekannte" Funktion erkennen kann, wie z.B. (arctan(x))' = [mm] \bruch{1}{1+x^2} [/mm] ?

Danke im Voraus und liebe Grüße,

Tobias

        
Bezug
rationaler Integrand: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Di 03.02.2009
Autor: Zwerglein

Hi, MaRaQ,

> [mm]\integral{\bruch{2x^3 - 3x + 1}{x+1}dx}[/mm] = ?
>  Ich habe hier erst einmal eine Polynomdivison mit Rest
> durchgeführt, um den Bruch aufzulösen.
>
> Daraus erhalte ich:
>
> [mm]\integral{\bruch{2x^3 - 3x + 1}{x+1}dx}[/mm] = [mm]\integral{2x^2 - 2x - 1 + \bruch{2}{x+1} dx}[/mm]
> = [mm]\bruch{2}{3}x^3[/mm] - [mm]x^2[/mm] - x + 2ln|x+1| + C
>  
> Das geht ja noch wunderschön auf (ich hoffe, ich habe mich
> da nicht verrechnet).

Alles OK!

> Aber wie müsste ich denn vorgehen, wenn ich z.B. den
> Kehrwert obiger Funktion integrieren müsste? Also wenn bei
> einem rationalen Integranden der Nennergrad größer ist, als
> der Zählergrad und ich keine "bekannte" Funktion erkennen
> kann, wie z.B. (arctan(x))' = [mm]\bruch{1}{1+x^2}[/mm] ?

Du müsstest eine Partialbruchzerlegung machen und anschließend die einzelnen Summanden integrieren!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]