www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - ration./irrat./algebr./transze
ration./irrat./algebr./transze < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ration./irrat./algebr./transze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Mi 09.05.2012
Autor: pestaiia

Aufgabe
Geben Sie mit Begründung an, ob die folgenden Zahlen rational, irrational, algebraisch oder transzendent sind:
wurzel pi
e^-1
wurzel 2 + L (wobei L die Liouvillesche Zahl ist)
wuzel 2 + wurzel 3
(1+wurzel5)/(2e)

Hallo!
Ich würde sagen, da wurzel von x irrational ist, wenn x keine quadratzahl ist, ist wurzel pi irrational.

weil eine rationale zahl als bruch a/b mit a und b als ganzen Zahlen dargestellt werden kann, kann 1/e nicht rational sein, weil e keine ganze Zahl sein.

Stimmt das so weit? Fortsetzung folgt!

        
Bezug
ration./irrat./algebr./transze: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mi 09.05.2012
Autor: felixf

Moin!

Erstmal vorweg: solche Fragen gehoeren in das Algebra-Forum, und eher nicht in das Analysis-Forum.

> Geben Sie mit Begründung an, ob die folgenden Zahlen
> rational, irrational, algebraisch oder transzendent sind:
>  wurzel pi
>  e^-1
>  wurzel 2 + L (wobei L die Liouvillesche Zahl ist)
>  wuzel 2 + wurzel 3
>  (1+wurzel5)/(2e)

Wenn du den Formeleditor / LaTeX verwendest, sieht das wesentlich lesbarer aus.

>  Ich würde sagen, da wurzel von x irrational ist, wenn x
> keine quadratzahl ist, ist wurzel pi irrational.

Und transzendent ist es nicht? Wenn [mm] $\sqrt{\pi}$ [/mm] nicht transzendent waer, was ist dann sein Quadrat?

> weil eine rationale zahl als bruch a/b mit a und b als
> ganzen Zahlen dargestellt werden kann, kann 1/e nicht
> rational sein, weil e keine ganze Zahl sein.

Jein. 3/4 ist auch keine ganze Zahl, und trotzdem ist $1 / (3/4) = 4/3$ eine rationale Zahl. Du musst das genauer begruenden!

Die Zahl [mm] $e^{-1}$ [/mm] ist uebrigens ebenfalls nicht algebraisch. Nimm an, es gibt ein Minimalpolynom. Bastle daraus eins von $e$ selber.

> Stimmt das so weit? Fortsetzung folgt!

Ja, aber es sind nicht stark genuge Aussagen.

LG Felix


Bezug
                
Bezug
ration./irrat./algebr./transze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mi 09.05.2012
Autor: pestaiia

Hallo felix!
>  
> Erstmal vorweg: solche Fragen gehoeren in das
> Algebra-Forum, und eher nicht in das Analysis-Forum.

okay, sorry! wir machen das zur zeit in analysis...

>  

> >  Ich würde sagen, da wurzel von x irrational ist, wenn x

> > keine quadratzahl ist, ist wurzel pi irrational.
>  
> Und transzendent ist es nicht? Wenn [mm]\sqrt{\pi}[/mm] nicht
> transzendent waer, was ist dann sein Quadrat?
>  

wurzel pi ist transzendet sonst wäre pi auch nicht transzendent, oder?

> > weil eine rationale zahl als bruch a/b mit a und b als
> > ganzen Zahlen dargestellt werden kann, kann 1/e nicht
> > rational sein, weil e keine ganze Zahl sein.
>  
> Jein. 3/4 ist auch keine ganze Zahl, und trotzdem ist [mm]1 / (3/4) = 4/3[/mm]
> eine rationale Zahl. Du musst das genauer begruenden!

ich hab nicht gesagt 3/4 eine ganze Zahl ist sondern 3 und 4 sind ganze zahlen:-)

>  
> Die Zahl [mm]e^{-1}[/mm] ist uebrigens ebenfalls nicht algebraisch.
> Nimm an, es gibt ein Minimalpolynom. Bastle daraus eins von
> [mm]e[/mm] selber.
>  
> > Stimmt das so weit? Fortsetzung folgt!
>
> Ja, aber es sind nicht stark genuge Aussagen.
>  
> LG Felix
>  


Bezug
                        
Bezug
ration./irrat./algebr./transze: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 09.05.2012
Autor: felixf

Moin!

> > Erstmal vorweg: solche Fragen gehoeren in das
> > Algebra-Forum, und eher nicht in das Analysis-Forum.
>  okay, sorry! wir machen das zur zeit in analysis...

Kein Problem. Wollt es nur angemerkt haben.

> > >  Ich würde sagen, da wurzel von x irrational ist, wenn x

> > > keine quadratzahl ist, ist wurzel pi irrational.
>  >  
> > Und transzendent ist es nicht? Wenn [mm]\sqrt{\pi}[/mm] nicht
> > transzendent waer, was ist dann sein Quadrat?
>
> wurzel pi ist transzendet sonst wäre pi auch nicht
> transzendent, oder?

Ja. Aber kannst du das auch begruenden?

>  > > weil eine rationale zahl als bruch a/b mit a und b als

> > > ganzen Zahlen dargestellt werden kann, kann 1/e nicht
> > > rational sein, weil e keine ganze Zahl sein.
>  >  
> > Jein. 3/4 ist auch keine ganze Zahl, und trotzdem ist [mm]1 / (3/4) = 4/3[/mm]
> > eine rationale Zahl. Du musst das genauer begruenden!
>
> ich hab nicht gesagt 3/4 eine ganze Zahl ist sondern 3 und
> 4 sind ganze zahlen:-)

[mm] $\frac{1}{1/3} [/mm] = 3$ ist eine rationale Zahl, obwohl $1/3$ keine ganze Zahl ist.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]