www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - ratio. Funkt. diverenzierbar??
ratio. Funkt. diverenzierbar?? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ratio. Funkt. diverenzierbar??: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mo 31.01.2005
Autor: Teletubyyy

Hallo,

Die Frage wirkt jetzt hoffentlich nicht zu dumm?? ;-)

Eine Funktion$f: [mm] \IR \rightarrow \IR$ [/mm] ,  [mm]f(x)=\begin{cases} 0, & \mbox{für } x \in \IR \mbox{ und } x \not\in \IQ \\ 1, & \mbox{für } x \in \IQ \end{cases}[/mm]
dürfte eigentlich an keiner Stelle diverenzierbar sein, so es sonst zwei "benachbarte" rationale (irrationale) Zahlen geben müsste, zwischen denen keine irrationale (rationale) Zahl liegt. Ist offenbar nicht der Fall, wenn auch eine mathematisch exakte Konstruktion nicht ganz leicht sein dürfte... (darf man so argumentieren?)
Allgemein kann man dann doch auch sagen:
Eine Funktion$f: [mm] \IR \rightarrow \IR$ [/mm] ,  [mm]f(x)=\begin{cases} g(x), & \mbox{für } x \in \IR\mbox{ und} \not\in\IQ \\ h(x), & \mbox{für } x \in \IQ \end{cases}[/mm] mit g(x) [mm] \not= [/mm] h(x) ist nicht differenzierbar. Ist damit dann auch g nicht differenzierbar [mm] (g:\IR\rightarrow \IR [/mm] \ [mm] \IQ)? [/mm]
und gilt entsprechendes auch für jede andere Funktion $h: [mm] \IR\rightarrow\IQ$ [/mm]  ? Und wie stehts mit einer Funktion [mm]i: \IQ \rightarrow \IQ[/mm]?

Wenn sich jemand herablässt einem armen verwirrten Schüler eine Antwort zu geben jetzt schon mal DANKE ;-)!

Gruß Samuel

        
Bezug
ratio. Funkt. diverenzierbar??: Differenzierbarkeit
Status: (Antwort) fertig Status 
Datum: 00:09 Di 01.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Samuel,

eine differenzierbare Funktion ist auch immer schon stetig. Deine Funktion
[mm]1_{\IQ}(x)=\begin{cases}1 \mbox{ für } x\in\IQ\\ 0 \mbox{ sonst }\end{cases}[/mm]
ist nicht stetig. Deshalb kann sie auch nicht diff'bar sein. (Man nennt sie übrigens charakteristische Funktion von [mm] \IQ [/mm] .) Sie ist sogar nirgends stetig, denn beliebig nahe bei jeder Zahl, egal ob rational oder irrational, treten immer sowohl der Funktionswert 0 als auch der Funktionswert 1 auf.

Bei deinem zweiten Beispiel kannst du von f nicht auf g und h schließen.
Als Gegenbeispiel genügt [mm] f=1_{\IQ} [/mm] , denn hier ist f nicht stetig, aber offensichtlich sind g und h beide differenzierbar.

Na hoffentlich hat sich deine Verwirrung etwas gelegt. ;-)

Im Mathe-Grundstudium bekommst du aber ausführlich mit solchen Sachen zu tun. :-)

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]