www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - rang in zshg mit bild / kern
rang in zshg mit bild / kern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rang in zshg mit bild / kern: matrix, rang, kern, bild
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 06.05.2008
Autor: nills2k

Aufgabe
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt
Aufgabe 3
Sei V ein n-dimensionaler Vektorraum über C mit n > 1 und phi ein Endomorphismus von V mit
Bild phi ist teilmenge von Kern phi: bestimmen sie in Abhängigkeit des Ranges von 
(a) das Minimalpolynom von ,
(b) das charakteristische Polynom von ,
(c) die Jordansche Normalform von .

wie setze ich für aufgabe a an? also habe mir folgendes überlegt. da kern phi alle vektoren enthält die auf 0 abbilden und bild phi darin enthalten ist, enthält bild phi auch nur vektoren die auf 0 abbilden.

die eigenwerte sind 0. damit ist das char. pol. [mm] x^n [/mm] und das minimale [mm] x^s. [/mm] nur wie komm ich weiter.

mfg christoph

        
Bezug
rang in zshg mit bild / kern: Antwort
Status: (Antwort) fertig Status 
Datum: 06:09 Mi 07.05.2008
Autor: MatthiasKr

hi,
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt
>  Aufgabe 3
>  Sei V ein n-dimensionaler Vektorraum über C mit n > 1 und

> phi ein Endomorphismus von V mit
>  Bild phi ist teilmenge von Kern phi: bestimmen sie in
> Abhängigkeit des Ranges von 
>  (a) das Minimalpolynom von ,
>  (b) das charakteristische Polynom von ,
>  (c) die Jordansche Normalform von .
>  wie setze ich für aufgabe a an? also habe mir folgendes
> überlegt. da kern phi alle vektoren enthält die auf 0
> abbilden und bild phi darin enthalten ist, enthält bild phi
> auch nur vektoren die auf 0 abbilden.
>  
> die eigenwerte sind 0. damit ist das char. pol. [mm]x^n[/mm] und das
> minimale [mm]x^s.[/mm] nur wie komm ich weiter.

die entscheidende beobachtung ist, dass [mm] $\phi(\phi(v))=0$ [/mm] ist für alle vektoren v, das bedeutet nichts anderes als dass [mm] $\phi^2=0$ [/mm] ist.

damit ist [mm] \phi [/mm] "höchst" nilpotent, besitzt also nur den eigenwert 0, richtig. darüberhinaus kannst du aber auch aussagen über die jordanblöcke machen... so kommst du dann auf das minimalpolynom sowie die JNF.

gruss
matthias

>  
> mfg christoph


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]