www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - randwertproblem
randwertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

randwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Mo 26.11.2007
Autor: beta81

Aufgabe
finde die allgemeine loesung der differentialgleichung
[mm] \ddot{x} [/mm] + [mm] \omega^2 x=e^{-\Gamma t}. [/mm]
bestimme die integrationskonstanten so, dass folgende randbedingungen erfuellt werden:

a) anfangswertproblem: x(0)=0 und [mm] \dot{x}(0)=0 [/mm]
b) randwertproblem: x(0)=0 und x(T)=0. zeige, dass das randwertproblem nicht immer eine loesung hat und bestimme diese zeiten T wo die loesung nicht mehr wohldefiniert ist.

hallo,

die allgemeine loesung lautet: [mm] x(t)=x_p(t)+x_{hom}(t)=\frac{1}{\Gamma^2+\omega^2}e^{-\Gamma t}+x_0\cos(\omega t+\phi). [/mm]

zu a):
[mm] \frac{1}{\Gamma^2+\omega^2}+x_0\cos(\phi) [/mm]       (1)
[mm] \frac{-\Gamma}{\Gamma^2+\omega^2}-x_0\omega\sin(\phi) [/mm]     (2)

[mm] (1)\cdot\omega\sin(\phi)+(2)\cdot\cos(\phi): [/mm]
[mm] \sin(\phi)=\frac{\Gamma}{\omega} [/mm] und daraus folgt [mm] \phi=arcsin\left(\frac{\Gamma}{\omega}\right) [/mm]

[mm] (1)\cdot\omega\cos(\phi)-(2)\cdot\sin(\phi): [/mm]
[mm] x_0=-\frac{\Gamma^2+\omega^2\cos\left(arcsin\left(\frac{\Gamma}{\omega}\right)\right)}{\omega^2(\Gamma^2+\omega^2)} [/mm]

insgesamt: [mm] x(t)=\frac{1}{\Gamma^2+\omega^2}e^{-\Gamma t}-\frac{\Gamma^2+\omega^2\cos\left(arcsin\left(\frac{\Gamma}{\omega}\right)\right)}{\omega^2(\Gamma^2+\omega^2)}\cos\left(\omega t+arcsin\left(\frac{\Gamma}{\omega}\right)\right) [/mm]

bis hier ist das so richtig, oder?

zu b):

[mm] \frac{1}{\Gamma^2+\omega^2}+x_0\cos(\phi) [/mm] =0                   (1)
[mm] \frac{1}{\Gamma^2+\omega^2}e^{-\Gamma T}+x_0\cos(\omega T+\phi)=0 [/mm]     (2)

hier komm ich nicht mehr weiter. kann mir einer bitte weiterhelfen??

danke!
gruss beta

        
Bezug
randwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 26.11.2007
Autor: leduart

Hallo
> finde die allgemeine loesung der differentialgleichung
> [mm]\ddot{x}[/mm] + [mm]\omega^2 x=e^{-\Gamma t}.[/mm]
>  bestimme die
> integrationskonstanten so, dass folgende randbedingungen
> erfuellt werden:
>  
> a) anfangswertproblem: x(0)=0 und [mm]\dot{x}(0)=0[/mm]
>  b) randwertproblem: x(0)=0 und x(T)=0. zeige, dass das
> randwertproblem nicht immer eine loesung hat und bestimme
> diese zeiten T wo die loesung nicht mehr wohldefiniert
> ist.
>  hallo,
>  
> die allgemeine loesung lautet:
> [mm]x(t)=x_p(t)+x_{hom}(t)=\frac{1}{\Gamma^2+\omega^2}e^{-\Gamma t}+x_0\cos(\omega t+\phi).[/mm]

Richtig

> zu a):
>  [mm]\frac{1}{\Gamma^2+\omega^2}+x_0\cos(\phi)=0[/mm]       (1)
>  [mm]\frac{-\Gamma}{\Gamma^2+\omega^2}-x_0\omega\sin(\phi)=0[/mm]    
> (2)
>  
> [mm](1)\cdot\omega\sin(\phi)+(2)\cdot\cos(\phi):[/mm]
> [mm]\sin(\phi)=\frac{\Gamma}{\omega}[/mm] und daraus folgt
> [mm]\phi=arcsin\left(\frac{\Gamma}{\omega}\right)[/mm]

wie du das gerechnet hast seh ich nicht ganz.
ich komme mit [mm] \*(1)+2 [/mm] auf [mm] tan\phi=\Gamma/\omega [/mm]
dadurch auch für [mm] x_0 [/mm] auf ein anderess Ergebnis!

wenn du statt mit [mm] x_0cos(\omega*t+\phi) [/mm]
mit [mm] A*sin\omega*t+ B*cos\omega*t [/mm] rechnest wird das alles einfacher, insbesondere auch das Randwertproblem!
Gruss leduart


Bezug
                
Bezug
randwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Mo 26.11.2007
Autor: beta81

hallo, danke fuer die antwort!

> ich komme mit [mm]\*(1)+2[/mm] auf [mm]tan\phi=\Gamma/\omega[/mm]

ich auch. hab mich verrechnet. sorry.


> wenn du statt mit [mm]x_0cos(\omega*t+\phi)[/mm]
>  mit [mm]A*sin\omega*t+ B*cos\omega*t[/mm] rechnest

wie kommst du drauf? ich haette [mm]A*e^{i\omega t}+ A^{\*}e^{-i\omega t}[/mm], wobei [mm] A^{\*} [/mm] das konjugiert komplexe zu A ist.

das randwertproblem lautet dann:
[mm] \frac{1}{\Gamma^2+\omega^2}=0 [/mm]
[mm] \frac{1}{\Gamma^2+\omega^2}e^{-\Gamma T}+A*e^{i\omega T}+ A^{\*}e^{-i\omega T}=0 [/mm]

wie gehts jetzt weiter?

gruss beta

Bezug
                        
Bezug
randwertproblem: ok
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Di 27.11.2007
Autor: beta81

ok. geschafft!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]