www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - primideal
primideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

primideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 So 21.06.2009
Autor: lenz

Aufgabe
Sei R(assoziativer,unitärer)kommutativer Ring,P ein Primideal in R.
zeigen sie:
a)sind A,B Ideale in R mit [mm] A\cap B\subseteq [/mm] P,so gilt [mm] A\subseteq [/mm] P oder
[mm] B\subseteq [/mm] P

Hallo
Es ist zu zeigen daß nicht A und B Elemente enthalten können die nicht
in P enthalten sind.Hat vielleicht jemand einen Tip.Hab keine Ahnung wie ich das zeigen kann.In [mm] \IZ [/mm] ist es glaube ich so daß ein Ideal das zusätzlich zu einem Primideal ein weiteres Ideal enthält [mm] \IZ [/mm] ist,da die Vereinigung
zweier Ideale in [mm] \IZ [/mm] der ggT ist.Hab keine Ahnung inwiefern das für andere
Ringe gilt.
Gruß Lennart

        
Bezug
primideal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mo 22.06.2009
Autor: pelzig


> sind A,B Ideale in R mit [mm]A\cap B\subseteq P[/mm],so gilt
> [mm]A\subseteq P[/mm] oder [mm]B\subseteq P[/mm].

Ist [mm] $A\not\subseteq [/mm] P$, so wähle [mm] $a\in A\setminus [/mm] P$. Für jedes [mm] $b\in [/mm] B$ gilt dann [mm] $ab\in A\cap B\subseteq [/mm] P$, also gilt, da P Primideal ist, [mm] $a\in [/mm] P$ (was nicht sein) oder [mm] $b\in [/mm] P$. Da [mm] $b\in [/mm] B$ beliebig war, folgt [mm] $B\subseteq [/mm] P$.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]