www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - pq formel
pq formel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pq formel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:20 Di 30.08.2011
Autor: Jops

Aufgabe
[mm] 1)49x^2-21x+2=0 [/mm]
[mm] 2)-1/2x^2+1/9-18/81 [/mm]

1)L=(0,294;0,136)
2)L=()
stimmen die Ergebnisse?

        
Bezug
pq formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Di 30.08.2011
Autor: MathePower

Hallo Jops,

> [mm]1)49x^2-21x+2=0[/mm]
>  [mm]2)-1/2x^2+1/9-18/81[/mm]


Hier meinst Du wohl:

[mm]-1/2x^2+1/9\blue{x}-18/81\blue{=0}[/mm]


>  1)L=(0,294;0,136)
>  2)L=()


>  stimmen die Ergebnisse?


Poste dazu Deine Rechenschritte.


Gruss
MathePower

Bezug
                
Bezug
pq formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mi 31.08.2011
Autor: Jops

Die [mm] Rechenschritte:a)49x^2-21x+2=0 [/mm]  /:49
                                     [mm] x^2-0,43+0,04 [/mm]
                                     [mm] 49/2+\wurzel{(43/2)^2-0,04} [/mm]
                                      0,215+0,079 bzw -0,079
                                       L=(0,294;,136)

b)unter der Wurzel ist eine negative Zahl daher ist es nicht mglich
   [mm] 2/9+\wurzel{2/9:2)^2-4/9} [/mm]


Ist irgendwo ein Fehler?

Bezug
                        
Bezug
pq formel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 31.08.2011
Autor: abakus


> Die [mm]Rechenschritte:a)49x^2-21x+2=0[/mm]  /:49
>                                       [mm]x^2-0,43+0,04[/mm]
>                                      
> [mm]49/2+\wurzel{(43/2)^2-0,04}[/mm]
>                                        0,215+0,079 bzw
> -0,079
>                                         L=(0,294;,136)
>  
> b)unter der Wurzel ist eine negative Zahl daher ist es
> nicht mglich
>     [mm]2/9+\wurzel{2/9:2)^2-4/9}[/mm]
>  
>
> Ist irgendwo ein Fehler?

"Irgendwo" ist lustig. In Aufgabe a) sind überall Fehler.
21:49 ist nicht 0,43; sondern [mm] \bruch{21}{49}. [/mm] Auch an anderen Stellen hast du solche Rundungsfehler gemacht.
Gruß Abakus


Bezug
                                
Bezug
pq formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Mi 31.08.2011
Autor: Jops

aber ich habe die Zahl 0,4285 auf 0,43 gerundet?das ist doch ok oder?:/

Bezug
                                        
Bezug
pq formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 31.08.2011
Autor: abakus


> aber ich habe die Zahl 0,4285 auf 0,43 gerundet?das ist
> doch ok oder?:/

Was soll daran ok sein, dass du ein falsches Ergebnis (21/49 ist auch nicht 0,4285, sondern ein unendlicher periodischer Dezimalbruch) durch ein noch falscheres ersetzt???
Du willst die Gleichung
[mm] x^2-\bruch{21}{49}x+\bruch{2}{49}=0 [/mm]
lösen. [mm] \bruch{21}{49} [/mm] lässt sich noch kürzen zu [mm] \bruch{3}{7} [/mm]
Die Lösung von [mm] x^2-\bruch{3}{7}x+\bruch{2}{49}=0 [/mm] ist
[mm] x_{1,2}= \bruch{3}{14}\pm\wurzel{\bruch{9}{196}-\bruch{2}{49}} [/mm]
Erweitere zunächst [mm] \bruch{2}{49} [/mm] so, dass auch der Nenner 196 entsteht, dann kannst du die Differenz unter der Wurzel kräftig vereinfachen und daraus sogar die Wurzel bilden.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]