www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - pq- Formel
pq- Formel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pq- Formel: Gleichungshilfe
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 21.11.2007
Autor: Asialiciousz

Meine Aufgabe:

{x|x²+7x-100=0} [mm] \IR [/mm] oder [mm] \IZ [/mm] ?!
x²+7x-100 = 0  ||+100
x²+7x+ [mm] \bruch{14}{2}² [/mm] = 100 + [mm] \bruch{14}{2}² [/mm] (quadrat.-Ergänzung)
[mm] (x+\bruch{14}{2})² [/mm] = [mm] \bruch{596}{4} ||\wurzel{} [/mm]
x + {14}{2}) = [mm] \bruch{\wurzel{596}}{2} [/mm]
x + 7 = [mm] \bruch{\wurzel{596}}{2} [/mm]

Meine Fragen dazu:
< Stimmt das bis hier hin alles?
(-bei der einen Stelle habe ich extra nicht geküurzt, um die Wurzel zu ziehen..)
< Und wie geht es weiter ?

Ich würde mich für eure Hilfe sehr freuen! Danke


        
Bezug
pq- Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 21.11.2007
Autor: leduart

Hallo Asialiciousz


> {x|x²+7x-100=0} [mm]\IR[/mm] oder [mm]\IZ[/mm] ?!
>  x²+7x-100 = 0  ||+100
>  x²+7x+ [mm]\bruch{14}{2}²[/mm] = 100 + [mm]\bruch{14}{2}²[/mm]
> (quadrat.-Ergänzung)

hier hast du falsch ergänzt, du brauchst statt der 14/2   7/2
denn [mm] (x+7/2)^2=x^2+2*7/2+(7/2)^2 [/mm]
Wenn du das korrigierst ist dein restliches Vorgehen richtig.

>  [mm](x+\bruch{14}{2})²[/mm] = [mm]\bruch{596}{4} ||\wurzel{}[/mm]
>  x +
> {14}{2}) = [mm]\bruch{\wurzel{596}}{2}[/mm]
>  x + 7 = [mm]\bruch{\wurzel{596}}{2}[/mm]

Hier musst du dran denken dass die Wurzel [mm] \pm [/mm] ist.
wenn du jetzt mit der richtigen Wurzel arbeitest
bringst du noch 7/2 auf die andere Seite und hast dann 2 Lösungen, da in der Wurzel keine Quadratzahl steht also keine rationale, erst recht keine ganze Zahl sondern ne reelle.
Gruss leduart


Bezug
                
Bezug
pq- Formel: korrigert (?!)
Status: (Frage) beantwortet Status 
Datum: 19:08 Mi 21.11.2007
Autor: Asialiciousz

{x|x²+7x-100=0} [mm] \IR [/mm]
x²+7x-100=0 ||+100
x²+7x+ [mm] \bruch{7}{2}²=100 [/mm] + [mm] \bruch{7}{2}² [/mm]
(x+ [mm] \bruch{7}{2})²=\bruch{449}{4} ||\wurzel{} [/mm]
[mm] x+\bruch{7}{2} [/mm] = [mm] \bruch{\wurzel{449}}{2} [/mm] V [mm] x+\bruch{7}{2} [/mm] = [mm] -\bruch{\wurzel{449}}{2} ||-\bruch{7}{2} [/mm]
x = -7 [mm] \bruch{\wurzel{449}}{2} [/mm] V x= 7 [mm] \bruch{\wurzel{449}}{2} [/mm]
[mm] \IL= [/mm] {-7 [mm] \bruch{\wurzel{449}}{2} [/mm] ;7 [mm] \bruch{\wurzel{449}}{2}} [/mm]

< So richtig?o.O
< Eher nicht oder? Darf man denn eine Wurzel in einem Bruch stehen lassen?

Bezug
                        
Bezug
pq- Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mi 21.11.2007
Autor: leduart

Hallo
> {x|x²+7x-100=0} [mm]\IR[/mm]
>  x²+7x-100=0 ||+100
>  x²+7x+ [mm]\bruch{7}{2}²=100[/mm] + [mm]\bruch{7}{2}²[/mm]
>  (x+ [mm]\bruch{7}{2})²=\bruch{449}{4} ||\wurzel{}[/mm]
>  
> [mm]x+\bruch{7}{2}[/mm] = [mm]\bruch{\wurzel{449}}{2}[/mm] V [mm]x+\bruch{7}{2}[/mm] =
> [mm]-\bruch{\wurzel{449}}{2} ||-\bruch{7}{2}[/mm]

Bis hier richtig, danach multiplizierst du doch nicht sondern ziehst [mm] \bruch{7}{2} [/mm] ab! also:

>  x = -7
> [mm]\bruch{\wurzel{449}}{2}[/mm] V x= 7 [mm]\bruch{\wurzel{449}}{2}[/mm]

falsch , richtig ist

[mm] x=-\bruch{7}{2}+\bruch{\wurzel{449}}{2} [/mm]  und

[mm] x=-\bruch{7}{2}-\bruch{\wurzel{449}}{2} [/mm]

entsprechend auch L korrigieren.

>  [mm]\IL=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{-7 [mm]\bruch{\wurzel{449}}{2}[/mm] ;7

> [mm]\bruch{\wurzel{449}}{2}}[/mm]
>  
> < So richtig?o.O
>  < Eher nicht oder? Darf man denn eine Wurzel in einem
> Bruch stehen lassen?  

Ja, das darf man!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]