www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - polynomdivision
polynomdivision < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynomdivision: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 27.05.2013
Autor: Jops

Aufgabe
Spalte Funktion in ganzrat. Hauptteil und gebrochenrat. Rest
[mm] \bruch{2x^4+6x^3+2x^2+5x}{4+4x} [/mm]

Nun mache ich es so
[mm] (2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x} [/mm]

bin mir unsicher ob es so stimmt?

        
Bezug
polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 27.05.2013
Autor: notinX

Hallo,

> Spalte Funktion in ganzrat. Hauptteil und gebrochenrat.
> Rest
>  [mm]\bruch{2x^4+6x^3+2x^2+5x}{4+4x}[/mm]
>  Nun mache ich es so
>  
> [mm](2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x}[/mm]
>  
> bin mir unsicher ob es so stimmt?

nein, stimmt nicht. Die ersten drei Summanden stimmen, danach nicht mehr.

Gruß,

notinX

Bezug
        
Bezug
polynomdivision: Test ist sehr einfach
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Mo 27.05.2013
Autor: Richie1401

Hallo,


> [mm](2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x}[/mm]
>  
> bin mir unsicher ob es so stimmt?

Kann das denn überhaupt stimmen?
Wenn [mm] 0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x} [/mm] das Ergebnis ist, dann müsste gelten:
[mm] (0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x})*(4+4x)=(2x^4+6x^3+2x^2+5x) [/mm]

Man sieht aber sehr sehr schnell, dass das nicht stimmen kann.

Also: Die Überprüfung kann man auch mal durch eine Multiplikation leicht verifizieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]