www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - polynom
polynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynom: aufgabe1
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 19.07.2008
Autor: marie11

Aufgabe
Geben sie jeweils ein Polynom [mm] p\in [/mm] R[x] an mit:
a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1

wie geht das?

        
Bezug
polynom: Polynom
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 19.07.2008
Autor: clwoe

Hi,

du musst doch nur ein Polynom aufstellen, welches die Vorschrift erfüllt.

Ich gebe dir mal die erste an, den Rest schaffst du sicherlich alleine.

Also, es soll gelten: p(0)=1

p: x+1=1

0+1=1 also ist die Bedingung erfüllt. Es gäbe hier noch unendlich viele andere Möglichkeiten aber das ist halt das einfachste.

Gruß,
clwoe


Bezug
                
Bezug
polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:13 So 20.07.2008
Autor: angela.h.b.

Hallo,

so ist das nicht gemeint.

Es soll ein Polynom gefunden werden, welches all diese Bedingungen gleichzeitig erfüllt.

Gruß v. Angela

Bezug
        
Bezug
polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 So 20.07.2008
Autor: angela.h.b.


> Geben sie jeweils ein Polynom [mm]p\in[/mm] R[x] an mit:
>  a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1
>  
> wie geht das?

Hallo,

Du hast hier 5 Polynom-Punkte angegeben, und Du weißt sicher, daß hierdurch ein Polynom vom Grad 4 eindeutig bestimmt ist.

Es gibt also [mm] p(x)=ax^4+bx³+cx²+dx+e, [/mm] welches die Bedingungen erfüllt.

Die Koeffizienten findet Du durch Lösung des aus den angegebenen Punkten gegebenen Gleichungssystems.

Damit hast Du dann das kleinste Polynom, welches die Bedingungen erfüllt - natürlich gibt es noch viele andere höheren Grades.

Gruß v. Angela



Bezug
                
Bezug
polynom: Polynom
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 So 20.07.2008
Autor: clwoe

Hallo,

ich dachte mir schon, das das so nicht stimmen kann, aber da steht ja auch "jeweils" ein Polynom.

Sorry!

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]