www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - polnischer Raum
polnischer Raum < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polnischer Raum: Eigenschaften zeigen
Status: (Frage) beantwortet Status 
Datum: 15:41 Do 07.10.2010
Autor: glassdanse

Aufgabe
Zeigen Sie, dass [mm] \IR, [/mm] das Einheitsintervall I = [0,1], der Einheitskreis T = { [mm] x\in\IC: [/mm] |x| = 1 } und das offene Intervall (0,1) polnische Räume sind.

Ich bearbeite gerade das erste Beispiel mit [mm] \IR. [/mm] Ein polnischer Raum ist ja ein separabler, vollständig metrisierbarer Raum. Separabel ist [mm] \IR, [/mm] da [mm] \IQ [/mm] dicht in [mm] \IR [/mm] liegt. Jetzt muss ich ja noch zeigen, dass [mm] \IR [/mm] vollständig metrisierbar ist, also eine Metrik finden, unter der jede Cauchy Folge konvergiert. Das müsste unter der normalen Betragsmetrik auch funktionieren. Nun hänge ich allerdings daran, dass ich nicht drauf komme, wie man zeigt, dass eine Cauchy Folge unter einer bestimmten Metrik konvergiert. Für Hilfe und Vorschläge wär ich sehr dankbar!

        
Bezug
polnischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 07.10.2010
Autor: fred97

Ich bin nicht sicher, ob ich Dein Problem verstanden habe, ebenso bin ich nicht sicher, ob Dir folgendes hilft:

1. Der [mm] \IR^n [/mm] (mit der üblichen Topologie )  ist polnisch.

2. Etwas allgemeiner: jeder separable Banachraum ( mit der Norm-Topologie ) ist polnisch.

3. Jeder kompakte Hausdorffraum mit abzählbarer Basis ist polnisch.

4. Ist X ein polnischer Raum und Y eine Teilmenge von X, so gilt:

            ist Y offen oder abgeschlossen, so ist Y polnisch


FRED

Bezug
                
Bezug
polnischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Do 07.10.2010
Autor: glassdanse

Dass die genannten Mengen polnisch sind, weiß ich ja schon, ich soll zeigen dass es so ist.

Bezug
        
Bezug
polnischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 07.10.2010
Autor: pelzig


>  Ich bearbeite gerade das erste Beispiel mit [mm]\IR.[/mm] Ein
> polnischer Raum ist ja ein separabler, vollständig
> metrisierbarer Raum. Separabel ist [mm]\IR,[/mm] da [mm]\IQ[/mm] dicht in [mm]\IR[/mm]liegt.

Ja, in der Standartopologie auf [mm]\IR[/mm] ist das so. Aber es ist ja von vornherein noch nicht klar, dass diese Topologie [mm]\IR[/mm] zu einem polnischen Raum macht.

> Jetzt muss ich ja noch zeigen, dass [mm]\IR[/mm] vollständig
> metrisierbar ist, also eine Metrik finden, unter der jede
> Cauchy Folge konvergiert.

Fast, es muss zusätzlich noch die von dieser Metrik induzierte Topologie mit der ursprünglichen übereinstimmen, das heißt ja genau "metrisierbar". Wenn ich die diskrete Metrik nehme wird jede Menge zu einem vollständigen metrischen Raum!

> Das müsste unter der normalen
> Betragsmetrik auch funktionieren. Nun hänge ich allerdings
> daran, dass ich nicht drauf komme, wie man zeigt, dass eine
> Cauchy Folge unter einer bestimmten Metrik konvergiert.
> Für Hilfe und Vorschläge wär ich sehr dankbar!

Du fragst warum [mm]\IR[/mm] mit der Betragsmetrik vollständig ist... nunja das ist eben Analysis I und der Beweis hängt davon ab wie ihr die reellen Zahlen eingeführt habt.

Viele Grüße, Robert


Bezug
        
Bezug
polnischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Do 07.10.2010
Autor: glassdanse

Okay, ich hab mir jetzt folgendes gedacht:
Ich habe gelesen, dass eine Metrik d die Topologie auf [mm] \IR [/mm] induziert, wenn die offenen Mengen von [mm] \IR [/mm] durch offene Kugeln bezüglich d erklärt werden können. Wenn ich als Metrik die Betragsmetrik nehme, kann ich ja die offenen Mengen (a,b) so erklären:
(a,b) = { [mm] x\in\IR: d(x,\bruch{a+b}{2})<\bruch{b-a}{2} [/mm] }
Laut dem Vollständigkeitsaxiom konvergiert jede Cauchy- Folge in [mm] \IR, [/mm] also auch im Bezug auf diese Metrik.
Bin ich auf dem richtigen Weg?

Bezug
                
Bezug
polnischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Do 07.10.2010
Autor: pelzig

Also eins mal vorweg: eigentlich ist es komplett banal, dass [mm]\IR[/mm] mit der Standarttopologie ein polnischer Raum ist, es steht eigentlich alles bereits da (bzw in deinem Ana I Skript), du musst die Puzzleteile nur noch zusammensetzen.

>  Ich habe gelesen, dass eine Metrik d die Topologie auf [mm]\IR[/mm]
> induziert, wenn die offenen Mengen von [mm]\IR[/mm] durch offene
> Kugeln bezüglich d erklärt werden können.

Das ist so nur fast richtig (also falsch). Es müssen die Kugeln [mm]\IB_r(x):=\{y\in\IR\mid d(x,y)[mm]\mathcal{O}=\bigcup_{i\in I}\mathbb{B}_{r_i}(x_i)[/mm] Das klingt jetzt alles furtbar kompliziert, aber die Standart-Topologie auf [mm]\IR[/mm] wird doch definiert als die von der Betragsmetrik induzierte... also ist doch hier gar nix mehr zu zeigen.

>  Laut dem Vollständigkeitsaxiom konvergiert jede Cauchy-
> Folge in [mm]\IR,[/mm] also auch im Bezug auf diese Metrik.
>  Bin ich auf dem richtigen Weg?

Ja, das ist schon der richtige Satz, aber die Begründung stimmt nicht ganz. Das Vollständigkeitsaxiom sagt: "Der metrische Raum [mm](\IR,d)[/mm] mit [mm]d(x,y)=|x-y|[/mm] ist vollständig." Da muss man nix mehr weiter sagen!

Ein polnischer Raum ist übrigens nichts weiteres als ein vollständiger, separabler, metrischer Raum nur dass man die Metrik wegwirft und nur noch die von ihr induzierte Topologie betrachtet...

Gruß, Robert

PS: Bitte schreibe in Zukunft keine Mitteilungen, wenn du tatsächlich eine weitere Frage zu einer Antwort stellen möchtest. Denn: existieren in einem Thread keine offenen Fragen mehr, dann taucht dieser auch nicht mehr in der Liste der Threads mit offenen Fragen auf und wird von den meisten Antwortschreibenden hier gar nicht mehr betrachtet.


Bezug
                        
Bezug
polnischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 12.10.2010
Autor: glassdanse

Vielen Dank für die Antworten, es macht langsam Klick, aber es passiert. ;) Ich beschäftige mich jetzt mit dem Beispiel der Intervalle [0,1] und (0,1). Das geschlossene Intervall ist ja mit der Betragsmetrik vollständig und jetzt suche ich eine Metrik, die das offene Intervall vervollständigt und bin dabei auf die triviale Metrik
[mm] d(x,y)=\left\{\begin{matrix} 0, wenn x=y \\ 1, wenn x\not=y \end{matrix}\right. [/mm]
gestoßen.
Der Begriff Cauchy- Folge bezieht sich ja auf die Metrik und in diesem Fall sind die Cauchy- Folgen ja nur die konstanten Folgen und die konvergieren auch im offenen Intervall.
Bleibt noch zu zeigen, dass die Intervalle separabel sind. Kann ich dazu einfach die Intervalle mit [mm] \IQ [/mm] schneiden? Liegt der erhaltene Schnitt dann nicht 'automatisch' dicht in den jeweiligen Intervallen oder mach ich es mir hier zu einfach?

Bezug
                                
Bezug
polnischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 12.10.2010
Autor: pelzig


> Ich beschäftige mich jetzt mit dem Beispiel der
> Intervalle [0,1] und (0,1). Das geschlossene
> Intervall ist ja mit der Betragsmetrik vollständig

Richtig. Und auch separabel als Unterraum eines separablen metrischen Raumes.

> jetzt suche ich eine Metrik, die das offene Intervall
> vervollständigt und bin dabei auf die triviale Metrik
>  [mm]d(x,y)=\left\{\begin{matrix} 0, wenn x=y \\ 1, wenn x\not=y \end{matrix}\right.[/mm]
> gestoßen.

Joa... kann man ja mal probieren. Leider stimmt die von der diskreten  Metrik induzierte Topologie, nämlich die diskrete Topologie [mm]\mathcal{T}=\mathcal{P}(X)[/mm], nicht mit der gegebenen (Standart-)Topologie auf [mm]X=(0,1)[/mm] überein.

> Der Begriff Cauchy- Folge bezieht sich ja auf die Metrik

korrekt.

> und in diesem Fall sind die Cauchy- Folgen ja nur die konstanten Folgen

Du meinst die "schließlich konstant werdenden" Folgen.

> und die konvergieren auch im offenen Intervall.

> Bleibt noch zu zeigen, dass die Intervalle separabel sind.

Da wirst du keinen Erfolg haben. [mm]\IQ\cap[0,1][/mm] ist zwar dicht in [mm][0,1][/mm] in der Standarttopologie, aber mit der diskreten Topologie sind nur Räume mit höchstens abzählbar vielen Punkten seperabel.

Ein Tipp für [mm]X=(0,1)[/mm]: konstruiere einen Homöomorphismus zwischen [mm](0,1)[/mm] und [mm]\IR[/mm]!

Gruß, Robert


Bezug
                                        
Bezug
polnischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 So 17.10.2010
Autor: glassdanse

Okay, ich habe einen Homöomorphismus zwischen (0,1) und [mm] \IR [/mm] gefunden.
x [mm] \mapsto [/mm] tan [mm] ((\bruch{x-1}{2})\pi). [/mm] Nun verstehe ich aber nicht, wie mir das weiterhilft..

Bezug
                                                
Bezug
polnischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mo 18.10.2010
Autor: pelzig


> Okay, ich habe einen Homöomorphismus zwischen (0,1) und [mm]\IR[/mm] gefunden.
> [...] Nun verstehe ich aber nicht, wie mir das weiterhilft...

Beweise folgendes:

Sei [mm](X,d)[/mm] ein metrischer Raum. Wir bezeichnen mit [mm]\mathcal{T}(d)[/mm] die von [mm]d[/mm] auf [mm]X[/mm] induzierte Topologie und sei [mm](Y,\mathcal{T}_Y)[/mm] ein weiterer topologischer Raum. Hast du nun einen Homöomorphismus [mm]\varphi:X\to Y[/mm], dann gilt:

1) durch [mm]\varphi^\*d(y_1,y_2):=d(\varphi^{-1}(y_1),\varphi^{-1}(y_2))[/mm] ist eine Metrik [mm]\varphi^\*d[/mm] auf [mm]Y[/mm] gegeben
2) [mm]\mathcal{T}(\varphi^\*d)=\mathcal{T}_Y[/mm]
3) [mm](X,d)[/mm]vollständig [mm]\gdw[/mm] [mm](Y,\varphi^\*d)[/mm] vollständig

Nun wende alles auf dein Beispiel [mm]\IR\xrightarrow{\varphi}(0,1)[/mm] an.

Gruß, Robert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]