www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - polarkoordinaten
polarkoordinaten < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Mo 07.01.2008
Autor: toros

Aufgabe
1a) berechne das integral [mm] \integral_{A}{dxdy\,ln(x^2+y^2)} [/mm] mit hilfe von polarkoordinaten, wobei die fläche A der einheitskreis ist.

1b) berechne das integral  [mm] \integral_{B}{dxdy\,\left(\frac{y^2}{(x^2+y^2)^2}+\frac{x^2}{(x^2+y^2)^2}\right)} [/mm]  mit hilfe von polarkoordinaten, wobei der integrationsbereich B bestimmt ist durch die bedingung [mm] \xi\le\sqrt{x^2+y^2}< [/mm] L

hi,

ich die aufgabe folgendermassen gerechnet:

1a) [mm] \integral_{A}{dxdy\,ln(x^2+y^2)}=\integral_{0}^{2\pi}d\phi\integral_{0}^1dr\,rlnr^2=\integral_{0}^{2\pi}d\phi\frac{1}{2}r^2(lnr^2-1)|_0^1=-\frac{1}{2}\integral_{0}^{2\pi}d\phi=-\pi [/mm]
warum kommt jetzt was negatives raus? kann mir einer bitte sagen, was ich falsch gemacht habe?

1b) [mm] \integral_{B}{dxdy\,\left(\frac{y^2}{(x^2+y^2)^2}+\frac{x^2}{(x^2+y^2)^2}\right)}=\integral d\phi dr\left(\frac{r^2\sin^2\phi}{r^4}+\frac{r^2\cos^2\phi}{r^4}\right)r=\integral_{\xi}^{L}dr\integral_{0}^{2\pi}d\phi \frac{1}{r}=2\pi\integral_{\xi}^{L}dr\frac{1}{r}=2\pi lnr|_{\xi}^{L}=2\pi ln\left(\frac{L}{\xi}\right) [/mm]
kann man jetzt noch was genaueres zu [mm] \xi [/mm] und L sagen oder war's das mit der aufgabe?

danke!
gruss toros

        
Bezug
polarkoordinaten: Funktion hat negative Werte
Status: (Antwort) fertig Status 
Datum: 14:49 Mo 07.01.2008
Autor: moudi

Hallo toros

zu 1a)

Für Punkte P(x,y) im Einheitskreis gilt [mm] $x^2+y^2\leq [/mm] 1$ und der Logarithmus einer Zahl kleiner 1 ist negativ.
D.h. die zu intergrierende Funktion ist im Einheitskreis negativ, desshalb ist das Integral auch negativ.


zu 1b)

Ja das war's.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]