www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - perfektes Matching Polytop
perfektes Matching Polytop < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

perfektes Matching Polytop: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:56 Mi 13.06.2012
Autor: Balendilin

Hallo,

ich möchte folgendes zeigen:

gegeben ist ein bipartiter Graph G=(V,E). Das perfekte Matching-Polytop ist gegeben als
[mm] P=conv\{x_M \in\IR^{|E|} : M \text{ist perfektes Matching von} G \} [/mm]
dabei ist [mm] x_M [/mm] der Vektor, der an der i-ten Stelle eine 1 stehen hat, wenn [mm] e_i\in [/mm] E eine Kante des perfekten Matchings M ist und sonst nur Nullen ( [mm] x_M [/mm] hat also so viele Einser, wie das perfekte Matching groß ist )

Ich soll nun zeigen, dass dieses Polytop das selbe ist wie das folgende:

[mm] P=\{x\in\IR^{|E|}: x_e\geq0 \forall e\in E, \sum_{e \text{ mit } v\in e} x_e=1 \forall v\in V\} [/mm]

dabei ist [mm] x_e [/mm] die e-te Komponente des Vektors x.


An Beispielen konnte ich das verifizieren. Und mein erster Gedanke war, dass das irgendwas mit der Eigenschaft zu tun haben muss, dass in einem bipartiten Graph die Kardinalität des maximalen Matchings genau so groß ist wie die Kardinatlität der minimalen Knotenüberdeckung. Immerhin ist im ersten Fall die Summe der Einträge von [mm] x_M [/mm] genau die Kardinalität des perfekten Matchings. Das hat aber irgendwie zu nichts geführt. Und auch der Versuch, die Ecken des zweiten Polytops zu berechnen, hat nicht geklappt... kann mir deswegen bitte irgendjemand helfen...
Danke :-)

        
Bezug
perfektes Matching Polytop: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Fr 15.06.2012
Autor: Stoecki


> Hallo,
>  
> ich möchte folgendes zeigen:
>  
> gegeben ist ein bipartiter Graph G=(V,E). Das perfekte
> Matching-Polytop ist gegeben als
> [mm]P=conv\{x_M \in\IR^{|E|} : M \text{ist perfektes Matching von} G \}[/mm]
>  
> dabei ist [mm]x_M[/mm] der Vektor, der an der i-ten Stelle eine 1
> stehen hat, wenn [mm]e_i\in[/mm] E eine Kante des perfekten
> Matchings M ist und sonst nur Nullen ( [mm]x_M[/mm] hat also so
> viele Einser, wie das perfekte Matching groß ist )
>  
> Ich soll nun zeigen, dass dieses Polytop das selbe ist wie
> das folgende:
>  
> [mm]P=\{x\in\IR^{|E|}: x_e\geq0 \forall e\in E, \sum_{e \text{ mit } v\in e} x_e=1 \forall v\in V\}[/mm]
>  
> dabei ist [mm]x_e[/mm] die e-te Komponente des Vektors x.
>  
>
> An Beispielen konnte ich das verifizieren. Und mein erster
> Gedanke war, dass das irgendwas mit der Eigenschaft zu tun
> haben muss, dass in einem bipartiten Graph die
> Kardinalität des maximalen Matchings genau so groß ist
> wie die Kardinatlität der minimalen Knotenüberdeckung.
> Immerhin ist im ersten Fall die Summe der Einträge von [mm]x_M[/mm]
> genau die Kardinalität des perfekten Matchings. Das hat
> aber irgendwie zu nichts geführt. Und auch der Versuch,
> die Ecken des zweiten Polytops zu berechnen, hat nicht
> geklappt... kann mir deswegen bitte irgendjemand helfen...
>  Danke :-)

Zunächst einmal stimmt die aussage nur, wenn man auch ganzzahligkeit fordert. auf den ersten blick glaube ich nicht, dass die matrix, die hier entsteht tootal unimodular ist, daher wirds wahrscheinlich sogar ganzzahlige ecken geben.

ansonsten überlege dir mal folgendes:
die summe aller kanten, die an einem knoten liegen (bzw deren bewertung) ist 1. diese 1 entspricht genau einer gematchten kante. hilft dir das weiter?

Gruß Bernhard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]