www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - partielle Ordnungsrelation
partielle Ordnungsrelation < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ordnungsrelation: konstruieren
Status: (Frage) beantwortet Status 
Datum: 20:54 So 25.10.2009
Autor: den9ts

Aufgabe
Gegeben sei die Abbildung f: [mm] M_1 \to M_2 [/mm] und auf [mm] M_2 [/mm] eine partielle Ordnungsrelation R.
Konstruiere mit f auf [mm] M_1 [/mm] eine partielle Ordnungsrelation R(SCHLANGE) -> (wie kriegt man hier ein [mm] \sim [/mm] ueber das R ?)

hätte erstmal bei [mm] M_2 [/mm] und der partiellen Ordnungsrelation angefangen, aber da siehts bei mir auch noch düster aus.
Das mit R(SCHLANGE) hatte ich in der Vorlesung auch so gut wie noch garnicht verstanden und warte derzeit noch auf das vom prof empfohlene buch...
kann mir hier vllt jemand n link geben wo das etwas genauer beschrieben ist, was R(SCHLANGE) bedeutet?
und wie ich an die aufgabe ranzugehen habe?

gruß


        
Bezug
partielle Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Mo 26.10.2009
Autor: pelzig


> wie kriegt man hier ein [mm]\sim[/mm] ueber das R ?

\tilde{R}


>  hätte erstmal bei [mm]M_2[/mm] und der partiellen Ordnungsrelation
> angefangen, aber da siehts bei mir auch noch düster aus.

Naja dann solltest du dir erstmal anschauen was ne partielle Ordnung ist.

>  Das mit R(SCHLANGE) hatte ich in der Vorlesung auch so gut
> wie noch garnicht verstanden und warte derzeit noch auf das
> vom prof empfohlene buch...

Da gibts gar nichts zu verstehen. [mm] $\tilde{R}$ [/mm] ist einfach nur ein Name. Die Schreibweise soll suggerieren, dass [mm] $\tilde{R}$ [/mm] irgendwie aus R konstruiert wird, hat aber keine spezielle mathematische Bedeutung.

Nur mal so als Tip: Definiere auf [mm] M_1 [/mm] die Relation [mm] $x\tilde{R}y\gdw_{\text{def}}f(x)Rf(y)$ [/mm] und zeige, dass dies eine partielle Ordnung ist.

Gruß, Robert

Bezug
                
Bezug
partielle Ordnungsrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mo 26.10.2009
Autor: den9ts

also wenn [mm] M_2 [/mm] eine part. Ordn. besitzt, dann gilt [mm] (y_1,y_2) \in [/mm] R [mm] \in M_2xM_2 \wedge y_1,y_2 \in M_2.. [/mm] stimmt das erstmal?

[mm] \rightarrow f^{-1}(\{y_1\})=\{x_1 \in M_1: f(x_1)=y_1\} \wedge f^{-1}(\{y_1\})=\{x_2\in M_1: f(x_2)=y_1\} [/mm]

und so könnt ich eine part. Ordn. definieren auf M1: [mm] (x_1,x_2) \in \tilde{R} \gdw \exists y_1, y_2 \in M_2: f(x_1)=y_1 \wedge f(x_2)=y_2 \wedge (y_1,y_2) \in [/mm] R

hätt ich somit eine part. Ordn. auf [mm] M_1 [/mm] konstruiert (nur nicht mit hilfe von f ?) - falls ja muss ich jetzt noch zeigen, dass es eine part. Ordnung ist? steht ja nich in der aufgabe..
- falls nein: welche der ausführungen sind falsch und was hab ich jetzt falsch verstanden von alledem?

danke, gruß

Bezug
                        
Bezug
partielle Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mi 28.10.2009
Autor: felixf

Hallo!

> also wenn [mm]M_2[/mm] eine part. Ordn. besitzt, dann gilt [mm](y_1,y_2) \in[/mm]
> R [mm]\in M_2xM_2 \wedge y_1,y_2 \in M_2..[/mm] stimmt das erstmal?

Was auch immer du damit aussagen willst. Ich weiss es nicht.

> [mm]\rightarrow f^{-1}(\{y_1\})=\{x_1 \in M_1: f(x_1)=y_1\} \wedge f^{-1}(\{y_1\})=\{x_2\in M_1: f(x_2)=y_1\}[/mm]

Ja, so ist das definiert.

> und so könnt ich eine part. Ordn. definieren auf M1:
> [mm](x_1,x_2) \in \tilde{R} \gdw \exists y_1, y_2 \in M_2: f(x_1)=y_1 \wedge f(x_2)=y_2 \wedge (y_1,y_2) \in[/mm]
> R

Das ist genau die gleiche Relation, die auch Robert definiert hat. Du musst nur noch zeigen, dass es eine partielle Ordnung ist.

> hätt ich somit eine part. Ordn. auf [mm]M_1[/mm] konstruiert (nur
> nicht mit hilfe von f ?) - falls ja muss ich jetzt noch
> zeigen, dass es eine part. Ordnung ist? steht ja nich in
> der aufgabe..

Du hast einfach eine Relation konstruiert. Damit es eine partielle Ordnung ist musst du noch zeigen, dass es auch eine ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]