www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - partielle Integration
partielle Integration < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Sa 25.02.2012
Autor: mili03

Gute Abend,

auch zu dieser Regel habe ich heute Abend eine Frage und hoffe, ihr könnt mir helfen!

Und zwar sind [mm] f,g\in [/mm] S, dem Schwartzraum, also schnell fallende [mm] C^\infty [/mm] Funktionen.
Dann gilt [mm] $\int_\IR g(x)(\partial^\alpha f)(x)dx=(-1)^\alpha\int_\IR (\partial^\alpha [/mm] g)(x)f(x)dx$.

Die Frage, die ich mir stelle, ist, was mit den Randtermen passiert ist. Sie scheinen zu verschwinden, nur sehe ich leider nicht wie.

(Ist mal wieder eine Stelle im Skript, die ich nicht nachvollziehen kann).

Danke für eure Hilfe,
Gruß mili

        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Sa 25.02.2012
Autor: donquijote


> Gute Abend,
>  
> auch zu dieser Regel habe ich heute Abend eine Frage und
> hoffe, ihr könnt mir helfen!
>  
> Und zwar sind [mm]f,g\in[/mm] S, dem Schwartzraum, also schnell
> fallende [mm]C^\infty[/mm] Funktionen.
>  Dann gilt [mm]\int_\IR g(x)(\partial^\alpha f)(x)dx=(-1)^\alpha\int_\IR (\partial^\alpha g)(x)f(x)dx[/mm].
>  
> Die Frage, die ich mir stelle, ist, was mit den Randtermen
> passiert ist. Sie scheinen zu verschwinden, nur sehe ich
> leider nicht wie.

Nehmen wir den Fall [mm] \alpha=1: [/mm]
Es ist [mm] \int g*f'=g*f-\int [/mm] g'*f und damit
[mm] \int_{-\infty}^{\infty}g(x)*f'(x)dx=\lim_{x\to\infty}g(x)*f(x)-\lim_{x\to-\infty}g(x)*f(x)-\int_{-\infty}^{\infty}g'(x)*f(x)dx [/mm]
Da es sich um schnell fallende Funktionen handelt, sind die Grenzwerte für [mm] x\to\pm\infty [/mm] gleich 0.
Durch wiederholte partielle Integration erhält man die Aussage für größere [mm] \alpha [/mm]

>  
> (Ist mal wieder eine Stelle im Skript, die ich nicht
> nachvollziehen kann).
>  
> Danke für eure Hilfe,
>  Gruß mili


Bezug
                
Bezug
partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Sa 25.02.2012
Autor: mili03

Danke, jetzt ist klar!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]