partielle Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:40 Mo 30.06.2014 | Autor: | kiko92 |
Aufgabe | Untersuchen Sie, an welchen Stellen die Funktion f: [mm] R^2 [/mm] -> R
f(x,y)=y*sqrt(2x^(2)+y^(2))
einmal partiell differenzierter ist und berechnen Sie die partiellen Ableitungen.
Tipp:
Verwenden Sie für (x,y) [mm] \not= [/mm] (0,0) die Ableitungsregeln und bei (x,y) = (0,0) die Definition der partiellen Ableitungen. |
Hallo liebe User,
ich habe eine Funktion gegeben: $f(x,y) = [mm] y*\sqrt{2x^2+y^2}$
[/mm]
So und die Frage lautet: Untersuchen Sie an welchen Stellen die Funktion partiell differenzierbar ist. Als tipp wurde mir gegeben: für (x,y)=(0,0) Ableitungsregel benutzen und für (x,y)(0,0)
So... ich habe einmal nach x und einmal nach y abgeleitet. Dann habe ich für die Ableitungen den Grenzwert bestimmt mit der Definition der partiellen Ableitung.
Das Problem ist, das ich einmal lim = 2 raus bekomme und einmal lim = existiert nicht. Was muss ich nun machen? Bzw. was sagt mir der Grenzwert jetzt? Muss ich noch was mit den Grenzwerten machen? Ich weiss echt nicht weiter... : /
Kann es sein das ich die Grenzwerte falsch berechnet habe?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:05 Mo 30.06.2014 | Autor: | chrisno |
Hallo,
ich habe mir mal erlaubt, eine der Formeln lesbarer zu setzen. Nimm sie als Vorlage für das weitere. Ich brauche nun nämlich Deine Rechnungen, um sie nachzuvollziehen. Heute werden das eher andere als ich fortsetzen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:25 Di 01.07.2014 | Autor: | fred97 |
> Untersuchen Sie, an welchen Stellen die Funktion f: [mm]R^2[/mm] ->
> R
> f(x,y)=y*sqrt(2x^(2)+y^(2))
>
> einmal partiell differenzierter ist und berechnen Sie die
> partiellen Ableitungen.
>
> Tipp:
> Verwenden Sie für (x,y) [mm]\not=[/mm] (0,0) die Ableitungsregeln
> und bei (x,y) = (0,0) die Definition der partiellen
> Ableitungen.
>
> Hallo liebe User,
>
> ich habe eine Funktion gegeben: [mm]f(x,y) = y*\sqrt{2x^2+y^2}[/mm]
>
> So und die Frage lautet: Untersuchen Sie an welchen Stellen
> die Funktion partiell differenzierbar ist. Als tipp wurde
> mir gegeben: für (x,y)=(0,0) Ableitungsregel benutzen und
> für (x,y)(0,0)
>
> So... ich habe einmal nach x und einmal nach y abgeleitet.
> Dann habe ich für die Ableitungen den Grenzwert bestimmt
> mit der Definition der partiellen Ableitung.
>
> Das Problem ist, das ich einmal lim = 2 raus bekomme und
> einmal lim = existiert nicht. Was muss ich nun machen? Bzw.
> was sagt mir der Grenzwert jetzt? Muss ich noch was mit den
> Grenzwerten machen? Ich weiss echt nicht weiter... : /
>
> Kann es sein das ich die Grenzwerte falsch berechnet habe?
Wie sollen wir das feststellen, wenn Du uns Deine Rechnungen nicht zeigst ?
Ich vermute, was Du gemacht hast: für (x,y) [mm] \ne [/mm] (0,0) hast Du [mm] f_x(x,y) [/mm] und [mm] f_y(x,y) [/mm] berechnet.
Dann warst Du wahrscheinlich der meinung, dass
[mm] f_x(0,0)=\limes_{(x,y)\rightarrow (0,0)}f_x(x,y) [/mm] und [mm] f_y(0,0)=\limes_{(x,y)\rightarrow (0,0)}f_y(x,y)
[/mm]
ist. Das geht hier aber mächtig in die Hose, denn [mm] f_x [/mm] und [mm] f_y [/mm] sind in (0,0) nicht stetig.
Das wirst Du sehen, wenn Du folgendes berechnet hast:
[mm] f_x(0,0)=\limes_{h \rightarrow 0}\bruch{f(h,0)-f(0,0)}{h}
[/mm]
und
[mm] f_y(0,0)=\limes_{h \rightarrow 0}\bruch{f(0,h)-f(0,0)}{h}
[/mm]
FRED
>
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|