www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Differentiation
partielle Differentiation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 So 06.05.2007
Autor: Braunstein

Aufgabe
Bestimmen Sie die Richtung des stärksten Anstiegs der Fläche [mm] z=2x^{y-1} [/mm] im Punkt (1,2,2).  

Hallo,

ich hab das Beispiel jetzt durchgerechnet. Hab für [mm] f_{x}(x_{0},y_{0})=2 [/mm] und für [mm] f_{y}(x_{0},y_{0})=0 [/mm] rausbekommen.

Ich weiß, dass mir der Gradient die Richtung des stärksten Anstiegs angiebt. Aber ... wie? Dh wie muss ich das hinschreiben? In Form von einem Vektor? (Das war mal meine erste Idee). Nur ist in diesem Fall der Vektor 2-dimensional, da ich nur [mm] f_{x} [/mm] und [mm] f_{y} [/mm] ausgerechnet hab. Ich benötige ja noch die z-Komponente für den Richtungsvektor (...den Vektor, der mir zeigt, in welche Richtung der stärkste Anstieg ist), oder? Wenn ja, wie bekomm ich denn die Komponente? Einfach in die Funktion 2 (siehe Punkt) einsetzen?  

Freue mich auf eine Antwort.

Gruß, h.

        
Bezug
partielle Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 So 06.05.2007
Autor: Event_Horizon

Du hast schon recht, du mußt dein Ergebnis nur als 2D-Vektor schreiben.

Die Funktion ist auch nur eine 2D-Funktion: Sie liefert für jedes xy-Paar einen Feldwert z. Du kannst dieses z natürlich visualisieren, indem du das als 3. Koordinate zeichnest, aber letztendlich gibt dir das nur Feldwerte in einer 2D-Ebene an.



Bezug
                
Bezug
partielle Differentiation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:17 Mo 07.05.2007
Autor: Braunstein

Feldwert nur in einer 2D-Ebene? Da bin ich mir nicht sicher, ob ich das jetzt genau verstanden hab.

z=xy=f(x,y) ist meiner Meinung nach eine 3-dimensionale Funktion, da ich für die Visualisierung doch 3 Koordinatenachsen brauch. Und wenn ich das mit meinem Grapher zeichnen lass, dann erstellt er mir auch einen 3D-Graphen.
Gut, man kann die Funktion auch 2D darstellen, dann wird mir mein "Funktionswert" auf die xy-Ebene projiziert.

Aber unterm Strich ist das ja trotzdem eine 3-dimensionale Funktion, oder? Und warum genügen 2 Komponenten für den Anstiegsvektor? Ich befind mich ja doch im 3D-Raum. Es soll ja gezeigt werden, "wohin" die größte Steigung verläuft. Eine 2-dimensionale Darstellung zeigt mir zwar projiziert, aber ...

Hmm ... kann es sein, dass man davon "ausgeht", dass die Z-Komponente sowieso in Richtung positiver z-Achse zeigt, da der Gradient ja immer in die Anstiegsrichtung zeigt????

Wie muss ich dann den Gradienten anschreiben? Ist dies nun der Richtungsvektor, der mir den höchsten Anstieg zeigt? Normalerweise schon, oder? Und reicht es, wenn ich [mm] f_{x} [/mm] und [mm] f_{y} [/mm] als Komponenten dafür einsetzt (natürlich mit den jeweiligen x/y-Werten)?

Freue mich auf eine Antwort.

Gruß, h.

Bezug
                        
Bezug
partielle Differentiation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Di 08.05.2007
Autor: Braunstein

Ich weiß, es ist viel zu lesen, aber vielleicht lässt sich jemand finden, der mir da weiter helfen kann.

Bezug
                        
Bezug
partielle Differentiation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 10.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]