www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Ableitungen Extrema
partielle Ableitungen Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitungen Extrema: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:38 Fr 10.02.2012
Autor: edhead

Aufgabe
geg: g(x,y)=2x-ax²+10y+y²+10xy, gesucht sind die Werte von a, bei denen die Funktion einen Extremwert besitzt.

Hallo,

gegeben sei die Funktion g(x,y)=2x-ax²+10y+y²+10xy, nun soll ich die Werte von a ermitteln, beid er die Funktion ein Extremwert hat.

Erst einmal habe ich die partiellen Ableitungen gebildet

[mm] \bruch{\delta g}{\delta x}= [/mm] 2-2ax+10y
[mm] \bruch{\delta g}{\delta y}= [/mm] 10+2y+10x

Nun setze ich die ersten Ableitungen Null und berechne die Nullstellen

Für [mm] \bruch{\delta g}{\delta y} [/mm]
x=0
10+10(0)=-2y
y=-5

daraus folgt für [mm] \bruch{\delta g}{\delta x} [/mm]
y=-5
-5=2-2ax+10(-5)
[mm] \bruch{-43}{2a}=x [/mm]

Äh *kopfkratz*, kann mir jetzt bitte jemand einen Schubser in die richtige Richtung geben, wie gehe ich jetzt vor?

Grüße

#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partielle Ableitungen Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Fr 10.02.2012
Autor: Gonozal_IX

Hiho,

> Erst einmal habe ich die partiellen Ableitungen gebildet
>  
> [mm]\bruch{\delta g}{\delta x}=[/mm] 2-2ax+10y
>  [mm]\bruch{\delta g}{\delta y}=[/mm] 10+2y+10x

[ok]
Wobei du hier statt \delta besser \partial nutzen solltest.

  

> Nun setze ich die ersten Ableitungen Null und berechne die
> Nullstellen

[ok]

>  
> Für [mm]\bruch{\delta g}{\delta y}[/mm]
>  x=0

Wieso setzt du hier x=0 ??

>  10+10(0)=-2y

daher macht das hier keinen Sinn.

>  y=-5

Das hier auch nicht.
  
Also nochmal von vorn.

[mm] $\partial_x [/mm] g = 0$
[mm] $\partial_y [/mm] g = 0$

liefert dir 2 Gleichungen mit 2 Unbekannten in Abhängigkeit von a.

MFG,
Gono.

Bezug
                
Bezug
partielle Ableitungen Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Fr 10.02.2012
Autor: edhead

Okay

2ax+10y-2=0
10x+2y+10=0

für a hätte ich  [mm] \bruch{-5y+1}{x} [/mm] raus.

Was sagt mir das jetzt über den Extremwert?

Bezug
                        
Bezug
partielle Ableitungen Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Fr 10.02.2012
Autor: Gonozal_IX

Hiho,

> für a hätte ich  [mm]\bruch{-5y+1}{x}[/mm] raus.

das kann doch gar nicht sein. a ist eine Konstante, wie soll die von x und y abhängen?

Bestimme doch mal bitte x UND y in Abhängigkeit von a.

Dann erhälst du eine Einschränkung, wann es überhaupt Lösungen geben kann für x und y.

MFG,
Gono.

Bezug
                                
Bezug
partielle Ableitungen Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Fr 10.02.2012
Autor: edhead

ich steh aufn Schlauch, sorry :-(

Ich würde jetzt die partielle Ableitung mit a in der Gleichung nach x bzw. y umstellen.

Dann hätte ich einen x-, bzw, einen y-Wert, und dann?

Bezug
                                        
Bezug
partielle Ableitungen Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Fr 10.02.2012
Autor: leduart

Hallo
Wenn du x=... und y=... hast kannst du fesstellen, ob die für alle a möglich sind oder für keine oder für ast alle. Warum löst du nicht einfach auf, das ist schneller als nen post schreiben.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]