www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - partielle Ableitung problem
partielle Ableitung problem < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitung problem: Frage
Status: (Frage) beantwortet Status 
Datum: 12:12 Sa 14.05.2005
Autor: christianl

Hallo,

ich habe eine allgemeine Frage zur partiellen Ableitung. Als Beispiel habe ich die folgende Funktion:

[mm]f(0,0):=0[/mm] und [mm]f(x,y)=\frac{x^3+y^3}{x^2+y^2}[/mm] fuer [mm](x,y)\neq (0,0)[/mm]

Ich moechte die partielle Ableitung nach x im Punkt [mm]x_0=(0,0)[/mm] bestimmen.

Bilde ich die partielle Ableitung ueber die Defintion der Richtungsableitung so habe ich([mm]u=e_1=(1,0)[/mm] da ich ja die Ableitung nach x moechte): [mm]\lim_{t\to 0}\frac{f(x_0+t\cdot u)-f(x_0)}{t}=\lim_{t\to 0}\frac{f(t,0)-0}{t}[/mm] ist gleich [mm]\lim_{t\to 0}\frac{1}{t}\frac{t^3}{t^2}=1[/mm]

Wenn ich nun die partielle Ableitung ("handwerklich" - also alles ausser x als konstant betrachten und dann nach x differenzieren) nach x bilde, so erhalte ich:
[mm] \frac{\partial f(x,y)}{\partial x}=\frac{x^4-2xy^3+3x^2y^2}{(x^2+y^2)^2} [/mm]

Betrachte ich nun die Folge [mm]x_n=(0,\frac{1}{n})[/mm] und setze dies in f ein, so erhalte ich: [mm]\lim_{n\to \infty} f(x_n)=0[/mm]
Noch verwirrender wird es, wenn ich die Folge [mm]y_n=(\frac{1}{n},0)[/mm] in f einsetze, dann ist [mm]\lim_{n\to \infty} f(y_n)=1[/mm]. Was ja im Prinzip nur gegen die Stetigkeit der partiellen Ableitung nach x in (0,0) spricht.

Wo ist mein Fehler? Sollte nicht auf beide Arten das gleiche rauskommen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partielle Ableitung problem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Sa 14.05.2005
Autor: Stefan

Hallo Christian!

Du hast alles richtig gemacht! [daumenhoch]

Die Auflösung ist ganz einfach:

Die partiellen Ableitungen existieren, aber sie sind nicht stetig!

Es ist also hier ein Unterschied, ob ich die partielle Ableitung an der Stelle $(0,0)$ berechne oder erst für einen Punkt $(x,y) [mm] \ne [/mm] (0,0)$ und dann den Grenzübergang $(x,y) [mm] \to [/mm] (0,0)$ (wie auch immer) vollziehe.

Das ist kein Paradoxon, sondern du hast einfach ein interessantes Beispiel für eine Funktion gefunden, für die die partiellen Ableitungen nach eine Variablen existieren, diese aber nicht stetig sind.

Liebe Grüße
Stefan

Bezug
                
Bezug
partielle Ableitung problem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Sa 14.05.2005
Autor: christianl

Danke, damit ist mein (mathematisches) Weltbild wieder geradegerueckt :)

gruss, Chris.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]