www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - partielle Ableitung
partielle Ableitung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:34 So 13.12.2009
Autor: mathiko

Hallo!
Habe ein Problem mit dem partiellem Ableiten von Vektorfeldern:

[mm] \vec{a} (\vec{r}) [/mm] = [mm] \alpha \vec{e_y} [/mm] soll nach x abgeleitet werden.
Das ist ja [mm] \vektor{0 \\ \alpha \\ 0} [/mm]

Ich muss nur die zweite Komponentengleichung betrachten:

Da [mm] \alpha [/mm] konstant sein soll, bekomme ich da 0 heraus, so dass ich am Ende für diese Ableitung den Nullvektor bekomme.

Ist das richtig so? Irgendwie kann ich nicht so wirklich glauben, dass da [mm] \vektor{0 \\ 0 \\ 0} [/mm] rauskommen soll...

Schon mal danke für eure Rückmeldungen!!!
mathiko

        
Bezug
partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 13.12.2009
Autor: Al-Chwarizmi


> Hallo!
>  Habe ein Problem mit dem partiellem Ableiten von
> Vektorfeldern:
>  
> [mm]\vec{a} (\vec{r})[/mm] = [mm]\alpha \vec{e_y}[/mm] soll nach x abgeleitet
> werden.
>  Das ist ja [mm]\vektor{0 \\ \alpha \\ 0}[/mm]
>  
> Ich muss nur die zweite Komponentengleichung betrachten:
>  
> Da [mm]\alpha[/mm] konstant sein soll, bekomme ich da 0 heraus, so
> dass ich am Ende für diese Ableitung den Nullvektor
> bekomme.
>  
> Ist das richtig so? Irgendwie kann ich nicht so wirklich
> glauben, dass da [mm]\vektor{0 \\ 0 \\ 0}[/mm] rauskommen soll...
>  
> Schon mal danke für eure Rückmeldungen!!!
>  mathiko


Hallo mathiko,

falls [mm] \alpha [/mm] wirklich konstant ist (nicht von x abhängig),
ist es genau so, wie du schreibst.

LG


Bezug
                
Bezug
partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mi 16.12.2009
Autor: mathiko

Okay!
Danke!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]