www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - parallele affine Räume
parallele affine Räume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele affine Räume: Korrektur
Status: (Frage) überfällig Status 
Datum: 16:55 Di 12.06.2012
Autor: huzein

Aufgabe
Sei $X$ ein affiner Raum und [mm] $X_1,X_2\subset [/mm] X$ zwei affine Unterräume von $X$. Zeigen Sie: Sind [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] parallel und ist [mm] $X_1\cap X_2\neq\emptyset$, [/mm] so ist [mm] $X_1\subset X_2$ [/mm] oder [mm] $X_2\subset X_1$. [/mm]

Hallo, ich habe zu obiger Aufgabe mir folgendes überlegt.

$Beweis.$ Seien [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] parallel, dann gilt [mm] $V_{X_1}\subset V_{X_2}$ [/mm] oder [mm] $V_{X_2}\subset V_{X_1}$. ($V_{X_j}$ [/mm] ist der Translationsraum von [mm] $X_j$) [/mm]

1. Fall: [mm] $V_{X_1}\subset V_{X_2}$ [/mm]
Der Translationsraum von [mm] $X_1$ [/mm] ist enthalten in dem Translationsraum von $X_^2$ und da [mm] $X_1\cap X_2\neq\emptyset$ [/mm] ist auch die Punktmenge [mm] $X_1$ [/mm] enthalten in [mm] $X_2$. [/mm]

Analog für den 2. Fall: [mm] $V_{X_2}\subset V_{X_1}$. [/mm]

---

Ich bin mir aber nicht sicher ob man aus [mm] $V_{X_1}\subset V_{X_2}$ [/mm] auch immer auf [mm] $X_1\subset X_2$ [/mm] schließen kann.

Für eine Korrektur und/oder Tips wäre ich sehr dankbar.

Hab die Frage in keinem anderen Forum gestellt.

        
Bezug
parallele affine Räume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 15.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]